Смекни!
smekni.com

Применение экономико-математического моделирования для обоснования (стр. 1 из 4)

Содержание

Введение

1 Раздел

Теоретические основы экономико-математического моделирования

1.1 История развития экономико-математического моделирования как науки

1.2 Первая и вторая теория двойственности

1.3 Экономико-математическая модель использования заготовленных кормов

2 Раздел

Методы решения задач линейного программирования

2.1 Графический метод

2.2 Симплекс метод

2.3 Двойственные задачи

3 Раздел

Применение экономико-математического моделирования для обоснования

плановых прогнозных решений.

Заключение

Список литературы

Введение

Вот уже несколько пятилетки – срок немалый – страна строит новую, рыночную экономику. За это время в открывшемся океа­не экономической свободы захлебнулись и пошли на дно целые поколения отважных первооткрывателей - предпринимателей. Но кое-кто – и таких миллионы выжил, создал собственное дело, процветает.

И всем интересно понять, и чем тут дело: почему одни — в пучине, а другие — на поверхности?

Тысячи умных книг объясняют причину успеха счастлив­чиков их высокими бойцовыми качествами: смелостью, способ­ностью идти на пролом, упорством в достижении цели, невзи­рая пи на какие преграды (включая законы). Все это так. Не слу­чайно среди "новых русских" немало крутых ребят, "накачан­ных" спортсменов, авантюристов, людей с уголовным прошлым; (а порой и настоящим).

Но вот как тогда объяснить еще более внушительный и масштабный результат в бизнесе, полученный тщедушными ин­теллектуалами: математиками, физиками, инженерами, которых трудно заподозрить в "уголовке"?

Считать сегодня умеют, конечно, все. Но этот счет, увы, очень часто ограничивается умением складывать и умножать.

Когда же дело доходит до расчетов, связанных с дробями или процентами, школьная эрудиция многих дает осечку.

Между тем коммерческие расчеты сегодня не ограничи­ваются школьной математикой. Вычисления, связанные с кре­дитными отношениями, работой с биржами и банками, прогно­зированием п. риском, не укладываются в элементарную ариф­метику.

И дело здесь не только в умении правильно выстроить ко­лонки цифр. Современный бизнес требует современного эконо­мического мышления, в немалой степени основанного на спе­циальных математических методах. Доход, прибыль, налог, ссу­да, дивиденд, рентабельность – все это цифры, и тут без хоро­шей математики просто не обойтись: чем правильнее расчет, тем прибыльнее результат.

Соединение экономики бизнеса с математическими рас­четами получило название экономико-математических методов.


1 Раздел

1.1 История развития экономико-математического моделирования как науки

Развитие любой пауки достигается прежде всего совершенствованием методов исследования, которые позволяют глубже позна­вать закономерности, изучаемые данной наукой. Одним из наиболее совершенных методов исследования явля­ются математические. Еще К. Маркс подчеркивал, что всякая нау­ка только тогда достигает совершенства, когда ей удается поль­зоваться математикой.

В середине 20-го века в связи с ускоренными темпами научно-тех­нического прогресса, углублением специализации и концентрации производства, развитием межхозяйственных и межотраслевых свя­зей, переходом к более совершенным формам организации и управления, а также со значительным ростом объема информации (учетной, нормативной, плановой) широкое применение в народ­ном хозяйстве находят экономико-математические методы и элек­тронно-вычислительная техника. Применение математических методов позволяет глубже по­знать природу экономических явлений, совершенствовать анализ.

Для выработки глубоко обоснованных рекомендаций экономи­ческая наука должна проводить качественный анализ в тесном со­четании с количественным анализом. Только при таком подходе экономическая наука может дать обоснованные рекомендации про­изводству.

Под экономико-математическими методами следует понимать совокупность методов математического программирования, теории вероятностей, теории исследования операций и массового обслужи­вания, теории игр, сетевых методов и математической статистики, используемых при решении тех или иных экономических задач.

Экономико-математические методы стали применяться относи­тельно недавно. В 1925—1926 гг. в нашей стране был составлен шахматный баланс народного хозяйства, где нашли отражение идеи межотраслевого баланса производства и распределения про­дукции.

В 1939 г. Л. В. Канторович решил задачу оптимальной загруз­ки -станков деревообделочного предприятия с целью получения, максимума продукции. По существу, это была первая задача ли­нейного программирования. Позднее (1947 г.) аналогичную зада­чу разработал и решил американский математик Дж. Данциг. Сама задача была им названа общей задачей линейного програм­мирования, а метод решения – симплексным.

В нашей стране широкие экономические исследования с при­менением математических методов начались в 1958 г., когда ака­демик В. С. Немчинов организовал небольшую лабораторию эко­номико-математических методов, которая вскоре переросла в Цен­тральный экономико-математический институт (ЦЭМИ) АН СССР. Начиная с 50-х годов вопросами оптимального программирования экономики занимался профессор В.В. Новожилов. Большие аграрио-экономические исследования с применением математических ме­тодов проведены проф. М. Е. Браславцем, И. Г. Поповым, Р. Г. Кравченко и другими.

Разработка и внедрение экономико-математических методов тре­буют применения быстродействующих ЭВМ. В стране создана боль­шая сеть вычислительных центров, оснащенных современными ЭВМ, в которых решаются задачи производственного и исследователь­ского характера.

1.2 Первая и вторая теорема двойственности.

Первая теорема двойственности

Основная теорема двойственности линейного программирования. Пусть рассматривается пара двойственных задач:

(1)
(2)

Если одна из этих задач обладает оптимальным решением, то и двойственная к ней задача также имеет оптимальное решение. Причем экстремальные значения соответствующих линейных форм равны:

.

Если же у одной из этих задач линейная форма не ограничена, то двойственная к ней задача противоречива.

Доказательство: Пусть основная задача (1) имеет конечное решение и получена окончательная симплексная таблица:

Так как данная таблица, по предположению, соответствует оптимальному решению задачи (1), то

и
. При этом
достигается при
.

Рассмотрим полученную таблицу двойственной задачи. Полагая значения переменных слева (небазисных) равными нулю:

,

найдем

, …,
,
, …,
. Следова­тельно, получено опорное решение:

, …,
,
, …,
.

Из последнего столбца,

в точке

будет минимальным в силу того, что

,
. Следовательно,
.

Пусть теперь линейная форма прямой задачи неограничена, т.е. для некоторой верхней переменной, например,

соответствующий коэффициент
, а все коэффициенты этого столбца симплексной таблицы неположительны:
,
, …,
. Тогда из таблицы для двойственной задачи:

,

то есть система ограничений двойственной задачи противоречива. Так как из неотрицательности

следует неположительность
(нельзя сделать ее положительной). То есть, система несовместна.

Теорема доказана.

Вторая теорема двойственности

Если хотя бы одно оптимальное решение одной из двойственных задач обращает

-е ограничение этой задачи в строгое неравенство, то
-я компонента (т.е.
или
) каждого оптимального решения второй двойственной задачи равна нулю.