Смекни!
smekni.com

Решение задач по теории вероятности (стр. 1 из 16)

Кремер Н.Ш.

Теория вероятностей

Примеры решений типовых задач

и задания для студентов
1 ГЛАВА

Основные понятия и теоремы теории вероятностей

В главе рассматриваются:

- классификация событий;

- классическое, статистическое и геометрическое определения вероятности;

- непосредственное вычисление вероятностей;

- действия над событиями;

- теоремы сложения и умножения вероятностей;

- формула Байеса.

Типовые задачи

Пример 1.1

Вероятность того, что студент сдаст первый экзамен, равна 0,9; второй – 0,9; третий – 0,8. Найти вероятность того, что студентом будут сданы:

а) только 2-й экзамен;

б) только один экзамен;

в) три экзамена;

г) по крайней мере два экзамена;

д) хотя бы один экзамен.

Решение

а) Обозначим события: Ai – студент сдаст i-й экзамен (i = 1, 2, 3);

В – студент сдаст только 2-й экзамен из трех.

Очевидно, что В =

, т.е. совместное осуществление трех событий, состоящих в том, что студент сдаст 2-й экзамен и не сдаст 1-й и 3-й экзамены. Учитывая, что события A1, А2, А3независимы, получим

б) Пусть событие С – студент сдаст один экзамен из трех. Очевидно, событие С произойдет, если студент сдаст только 1-й экзамен из трех, или только 2-й, или только 3-й, т.е.

в) Пусть событие D – студент сдаст все три экзамена, т.е. D = A1A2A3. Тогда

г) Пусть событие Е – студент сдаст по крайней мере два экзамена (иначе: «хотя бы два» экзамена или «не менее двух» экзаменов). Очевидно, что событие Е означает сдачу любых двух экзаменов из трех либо всех трех экзаменов, т.е.

и

д) Пусть событие F – студент сдал хотя бы один экзамен (иначе: «не менее одного» экзамена). Очевидно, событие F представляет сумму событий С (включающего три варианта) и Е (четыре варианта), т.е. F = А1 + А2 + А3 = С + Е (семь вариантов). Однако проще найти вероятность события F, если перейти к противоположному событию, включающему всего один вариант – F =

, т.е. применить формулу (1.27).

Итак,

т.е. сдача хотя бы одного экзамена из трех является событием практически достоверным.

Пример 1.2

Причиной разрыва электрической цепи служит выход из строя элемента К1 или одновременный выход из строя двух элементов – К2и К3. Элементы могут выйти из строя независимо друг от друга с вероятностями, равными соответственно 0,1; 0,2; 0,3. Какова вероятность разрыва электрической цепи?

Решение

Обозначим события: Ai - выход из строя элемента Ki (i - 1, 2, 3…);

B – разрыв электрической цепи.

Очевидно, по условию событие B произойдет, если произой­дет либо событие А1, либо A2A3, т.е. B = А1 + А2А3. Теперь, по формуле (1.25)

(при использовании теоремы умножения учли независимость событий A1, A2и А3).

Пример 1.3

Производительности трех станков, обрабатывающих одинаковые детали, относятся как 1:3:6. Из нерассортированной партии обработанных деталей взяты наудачу две. Какова вероятность того, что: а) одна из них обработана на 3-м станке;

б) обе обработаны на одном станке?

Решение

а) Обозначим события: Ai – деталь обработана на i-м станке (i = 1, 2, 3);

В – одна из двух взятых деталей обработана на 3-м станке.

По условию

,

,
.

Очевидно, что B=A1A3+A2A3+A3A1+A3A2(при этом надо учесть, что либо первая деталь обработана на 3-м станке, либо вторая). По теоремам сложения и умножения (для независимых событий)

б) Пусть событие С – обе отобранные детали обработаны на одном станке. Тогда

C=A1A1+A2A2+A3A3и P(C) = 0,1*0,1 + 0,3*0,3 + 0,6*0,6 = 0,46.

Пример 1.4

Экзаменационный билет для письменного экзамена состоит из 10 вопросов – по 2 вопроса из 20 по каждой из пяти тем, представленных в билете. По каждой теме студент подготовил лишь половину всех вопросов. Какова вероятность того, что студент сдаст экзамен, если для этого необходимо ответить хотя бы на один вопрос по каждой из пяти тем в билете?

Решение

Обозначим события: А1, А2студент подготовил 1-й, 2-й вопросы билета по каждой теме;

Bi – студент подготовил хотя бы один вопрос билета из двух по i-й теме (i = 1, 2, ..., 5);

С – студент сдал экзамен.

В силу условия С = В1В2В3В4B5. Полагая ответы студента по разным темам независимыми, по теореме умножения вероятностей (1.24)

Так как вероятности Р(Вi) (i=1,2,..., 5) равны, то P(C) = (Р(Вi))5. Вероятность Р(Вi) можно найти по формуле (1.27) (или (1.25)):

Теперь P(C) = 0,7635 = 0,259

Пример 1.5

При включении зажигания двигатель начнет работать с вероятностью 0,6. Найти вероятность того, что:

а) двигатель начнет работать при третьем включении зажигания;

б) для запуска двигателя придется включать зажигание не более трех раз.

Решение

а) Обозначим события: А – двигатель начнет работать при каждом включении зажи­гания;

В – то же при третьем включении зажигания.

Очевидно, что В=

и Р(В) =
= 0,4*0,4*0,6 = 0,096.

б) Пусть событие С – для запуска двигателя придется вклю­чать зажигание не более трех раз. Очевидно, событие С наступит, если двигатель начнет работать при 1-м включении, или при 2-м, или при 3-м включении, т.е. С = А + АА + А АА. Следовательно,

Пример 1.6

Среди билетов денежно-вещевой лотереи половина выигрышных. Сколько лотерейных билетов нужно купить, чтобы с вероятностью, не меньшей 0,999, быть уверенным в выигрыше хотя бы по одному билету?

Решение

Пусть вероятность события Ai – выигрыша по i-мy билету равна р, т.е. P(Ai) = р. Тогда вероятность выигрыша хотя бы по одному из п приобретенных билетов, т.е. вероят­ность суммы независимых событий A1,A2,...,Ai,...,Anопределится по формуле (1.29):

P(A1+A2+…+An) = 1-(1-p)n

По условию 1-(1-p)n ≥ R , где R = 0,999, откуда

(1 - p)n ≤ 1 – R

Логарифмируя обе части неравенства, имеем

nlg(1 - p) ≤ lg(1 - R)

Учитывая, что lg(1 - p) – величина отрицательная, получим

(1.30)

По условию р = 0,5, R = 0,999. По формуле (1.30)

,

т.е. n ≥ 10 и необходимо купить не менее 10 лотерейных билетов.

(Задачу можно решить, не прибегая к логарифмированию, путем подбора целого числа n, при котором выполняется неравенство (1 - p)n ≤ 1 – R , т.е. в данном случае

; так, еще при n = 9
=
, а уже при n = 10
=
, т.е. n ≥ 10).

Пример 1.7

Два игрока поочередно бросают игральную кость. Выигрывает тот, у которого первым выпадет «6 очков». Какова вероятность выигрыша для игрока, бросающего игральную кость первым? Вторым?