Смекни!
smekni.com

Теория устойчивости (стр. 1 из 4)

Введение

Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов. Такое поведение может быть достигнуто лишь в системах автоматического регулирования, обладающих устойчивостью по отношению к этим воздействиям. Устойчивость системы означает, что малое изменение входного сигнала или какого-нибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это определение раскрывает физический смысл понятия устойчивости.

Теория устойчивости, основоположниками которой являются великий русский ученый А.М. Ляпунов и великий французский ученый А.Пуанкаре, представляет собой важный раздел прикладной математики. Создателями современной теории устойчивости являются русские ученые Н.Г. Четаев, Е.А. Барбашин, Н.П. Еругин, Н.Н. Красовский.

1. Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.

Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений


x’ = f ( t , x )

(1)


с начальными условиями x ( t0 ) = x0 (2)

где x = ( x1, x2, ... , xn ) - n - мерный вектор; t Î I = [t0, + ¥ [ - независимая переменная, по которой производится дифференцирование;

f ( t, x ) = ( f1 ( t , x ) , f2 ( t , x ) , ... , fn ( t , x ) ) - n - мерная вектор - функция.

Комментарии к задаче Коши (1), (2). Для простоты восприятия эту задачу можно сначала трактовать как задачу Коши для скалярного дифференциального уравнения первого порядка вида x’= f ( t , x ) с начальным условием x ( t0 ) = x0. С целью упрощения все рисунки п. 10 ,если нет специальных оговорок, приводится для случая n = 1.

x 0 t Рис.1

Так как задача теории устойчивости впервые возникла в механике, то переменную t принято интерпретировать как время, а искомую вектор-функцию x ( t ) - как движение точки в зависимости от времени в пространстве Rn+1 (рис.1)

Пусть задача Коши (1), (2) удовлетворяет условиям теоремы существования и единственности. Тогда через каждую точку ( t0 , x0 ) области единственности решений проходит только одна интегральная кривая. Если начальные
данные ( t0 , x0 ) изменяются, то изменяется и решение. Тот факт, что решение зависит от начальных данных, обозначается следующим
образом: x ( t ) =
x ( t ; t0 , x0 ). Изменение этого решения в данной
математической модели с изменением начальных данных ( t0 , x0 )
приводят к существенному изменению решения x ( t ; t0 , x0 ) , приводит к тому, что такой моделью нельзя пользоваться, поскольку
начальные данные ( t0 , x0 ) получаются из опыта, а изменения не могут быть абсолютно точными. Естественно, что в качестве математической модели пригодна лишь та задача Коши, которая устойчива к малым изменениям начальных данных.

Определим понятие устойчивости, асимптотической устойчивости и неустойчивости в смысле Ляпунова. Для этого отклоение решения x ( t ) =
x ( t ; t0 , x0 ) , вызванное отклонением D x0 начального значения x0 , будем записывать следующим образом:

| x ( t ; t0 , x0 + D x0 ) - x ( t ) | = | x ( t ; t0 , x0 + D x0 ) - x ( t ; t0 , x0 ) |.

Определение 1. Решение x ( t ) =
x ( t ; t0 , x0 ) системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если оно непрерывно по x0 на интервале I = = [ t0, + ¥[ , т.е. "e > 0 $d > 0 такое, что "D x0

| D x0 | £dÞ | x ( t ; t0 , x0 + D x0 ) - x ( t ) | £e" t ³ t0.

Если, кроме того, отклонение решения x ( t ) стремится к нулю при t ® + ¥для достаточно малых D x0 , т.е. $D > 0 "D x0.

| D x0 | £DÞ | x ( t ; t0 , x0 + D x0 ) - x ( t ) | ® 0 , t ® + ¥. (3)

то решение x ( t ) системы (1) называется асимптотически устойчивым в положительном направлении (или асимптотически устойчивым).

Аналогично определяются различные типы устойчивости решения в отрицательном направлении.

Комментарий к определению 1. 1) Геометрически устойчивость по Ляпунову решение х ( t ) можно интерпритировать следующим образом ( рис.1 ) : все решения x ( t ; t0 , x0 + D x0 ) , близкие в начальный момент t0 к решению x ( t ) (т.е. начинающиеся в пределах d - трубки ) , не выходят за пределы e - трубки при всех значениях t ³ t0 .
x 0 t Рис.2

2) Асимптотическая устойчивость есть устойчивость с дополнительным условием (3) : любое решение x1 ( t ) , начинающееся в момент t0 в D - трубке, с течением времени неограниченно приближается к решению x ( t ) (рис.2). Трубка радиуса D называется областью притяжения решения x ( t ). Решение x2 ( t ), начинающееся при t = t0 за пределами области притяжения, но в пределах d - трубки, не покидает e - трубку, хотя может и не приближаться к решению x(t).