Смекни!
smekni.com

Суммирование расходящихся рядов (стр. 1 из 5)

Содержание

Введение

Глава 1. Основные понятия теории рядов

1.1 Определения и термины

1.2 Истоки проблемы

Глава 2. Метод степенных рядов

2.1 Суть метода

2.2 Теорема Абеля

2.3 Теорема Таубера

Глава 3. Метод средних арифметических

3.1 Суть метода

3.2 Взаимоотношение между методами Пуассона-Абеля и Чезаро

3.3 Теорема Харди-Ландау

3.4 Применение обобщенного суммирования к умножению рядов

Глава 4. Другие методы обобщенного суммирования

4.1 Методы Г.Ф. Вороного

4.2 Обобщенные методы Чезаро

4.3 Метод Бореля

4.4 Метод Эйлера

Заключение

Список использованной литературы

Введение

Как мы уже знаем математический анализ, занимается проблемами изучения множества объектов, таких как: числа, переменные, функции, последовательности, ряды и др. При изучении свойств того или иного объекта могут возникать пробелы или “пустоты". Это возникает тогда, когда наука не может объяснить: “Почему происходит так, а не иначе? ”. Такой казус существовал некоторое время и при изучении рядов, а точнее при изучении расходящихся рядов.

При изучении рядов заданному числовому ряду

(А)

в качестве его суммы мы приписывали предел её частичной суммы

, в предположении, что этот предел существует и конечен. “Колеблющийся" расходящийся ряд оказывался лишенным суммы и подобные ряды, как правило, из рассмотрения исключали. Естественно возникает вопрос о возможности суммирования расходящихся рядов в некоем новом смысле, конечно отличном от обычного. Этот вопрос возник ещё до второй половины XIX века. Некоторые методы такого суммирования оказались довольно-таки плодотворными.

В данной своей работе я хочу рассмотреть эти методы, обратить внимание на то, где и какой метод наиболее применим, изучить связь между этими методами. Моя работа состоит из 4 глав, первая из которых содержит основные термины и определения необходимые для работы. Последующие главы рассматривают непосредственно сами методы суммирования. Вторая и третья главы посвящены двум основным методам суммирования: метод степенных рядов и метод средних арифметических, а третья содержит сведения о других существующих, но реже применяемых методах. Каждая из четырех глав содержит примеры суммирования рядов по данному конкретному методу.

Глава 1. Основные понятия теории рядов

1.1 Определения и термины

Как мы упомянули вначале цель нашего исследования - расходящиеся ряды. А что же такое, вообще, ряд?

Пусть задана некоторая бесконечная последовательность чисел

(1)

Составленный из этих чисел символ

(2)

называется бесконечным рядом, а сами числа (1) - членами ряда. Вместо (2), пользуясь знаком суммы, часто пишут так:

(2а)

Станем последовательно складывать члены ряда, составляя (в бесконечном количестве) суммы;

(3)

их называют частичными суммами ряда.

Конечный или бесконечный предел А частичной суммы

ряда (2) при
:

называют суммой ряда и пишут

,

Придавая тем самым символу (2) или (2а) числовой смысл. Если ряд имеет конечную сумму, его называют сходящимся, в противном же случае (т. е если сумма равна

, либо же суммы вовсе нет) - расходящимся.

Примеры.1) простейшим примером бесконечного ряда является уже знакомая геометрическая прогрессия:

Его частичная сума будет (если

)

Если знаменатель прогрессии, q, по абсолютной величине меньше единицы, то

имеет конечный предел

то есть наш ряд сходится, и

будет его суммой.

При

та же прогрессия дает пример расходящегося ряда. Если
, то его суммой будет бесконечность (определенного знака), в прочих случаях суммы вовсе нет. Отметим, в частности, любопытный ряд, который получается при a=1 и q= - 1;

1+ (-1) +1+ (-1) +1+…

Его частичные суммы попеременно равны то 1, то 0.

2) Легко установить расходимость ряда

В самом деле, так как члены его убывают, то его n-я частичная сумма

и растет до бесконечности вместе с n.

1.2 Истоки проблемы

Различные факты из области математического анализа, как, например, расходимость, произведения двух сходящихся рядов, естественно выдвинули вышеупомянутый вопрос: “О возможности суммирования расходящихся рядов, в некоем новом смысле”.

Нужно сказать, что до создания Коши строгой теории пределов (и связанной с нею теории рядов) расходящиеся ряды нередко встречались в математической практике.

Хотя применение их при доказательствах и оспаривалось, тем не менее иной раз делались попытки придавать им даже числовой смысл.

Вспомним, опять, наш колеблющийся ряд

Еще со времен Лейбница в качестве "суммы" приписывалось число

. Эйлер, например, мотивировал это тем, что из разложения

(которое в действительности имеет место лишь для

) при подстановке вместо х единицы как раз и получается

В этом уже содержалось зерно истины, но постановке вопроса не хватало четкости; самый произвол в выборе разложения оставлял открытой возможность, скажем из другого разложения (где п и т - любые, но

)

получить одновременно

Современный анализ ставит вопрос по-другому. В основу кладется то или иное точно сформулированное определение “обобщенной суммы" ряда, не придуманное только для конкретно интересующего нас числового ряда, но приложимое к целому ряду классов таких рядов. Определение “обобщенной суммы" обычно подчиняется двум требованиям.

Во-первых, если ряду

приписывается“обобщенная сумма" А, а ряду
- “обобщенная сумма" В, то ряд
, где
p, q- две произвольные постоянные, то должен иметь в качестве “обобщенной суммы" число
.
Метод суммирования, удовлетворяющий этому требованию, называется линейным.

Во-вторых, новое определение должно содержать обычное определение как частный случай. Точнее говоря, ряд, сходящийся в обычном смысле к сумме А, должен иметь “обобщенную сумму", и притом также равную А. Метод суммирования, обладающий этим свойством, называют регулярным. Разумеется, интерес представляют лишь такие регулярные методы, которые позволяют устанавливать “сумму” в более широком классе случаев, нежели обычный метод суммирования: лишь тогда с полным правом можно говорить об “обобщенном суммировании”. Мы переходим к теперь непосредственно к рассмотрению особо важных с точки зрения приложений методов ‘обобщенного суммирования".

Глава 2. Метод степенных рядов

2.1 Суть метода

Этот метод, в существенном принадлежит Пуассону, который сделал первую попытку применить его к тригонометрическим рядам. Он состоит в следующем.