Смекни!
smekni.com

Метод простых итераций с попеременно чередующимся шагом (стр. 1 из 3)

Учреждение образования

«Брестский государственный университет имени А.С. Пушкина»

Кафедра информатики и прикладной математики

Курсовая работа

Метод простых итераций с попеременно чередующимся шагом

Брест 2010


Содержание

Априорный выбор числа итераций в методе простых итераций с попеременно чередующимся шагом для уравнений I рода

Постановка задачи

Сходимость при точной правой части

Сходимость при приближенной правой части

Оценка погрешности


Априорный выбор числа итераций в методе простых итераций с попеременно чередующимся шагом для уравнений I рода

Как известно, погрешность метода простых итераций с постоянным или переменным шагом зависит от суммы итерационных шагов и притом так, что для сокращения числа итераций желательно, чтобы итерационные шаги были как можно большими. Однако на эти шаги накладываются ограничения сверху. Возникает идея попытаться ослабить эти ограничения. Это удаётся сделать, выбирая для шага два значения

и
попеременно, где
уже не обязано удовлетворять прежним требованиям.

Постановка задачи

В гильбертовом пространстве

решается уравнение I рода
с положительным ограниченным самосопряжённым оператором
, для которого нуль не является собственным значением. Используется итерационный метод

(4.1)

Предполагая существование единственного точного решения

уравнения
при точной правой части
, ищем его приближение
при приближенной правой части
. В этом случае метод примет вид

(4.2)

Сходимость при точной правой части

Считаем

. Тогда, воспользовавшись интегральным представлением самосопряжённого оператора, получим

Так как

Поэтому

Если

, то

Если

, то

при

,

То

Здесь

─ натуральные показатели,
или
. Потребуем, чтобы здесь и всюду ниже для
, удовлетворяющих условию
, для
было

(4.3)

для любого

, т.е.
. Правое неравенство даёт
. Так как
, то

(4.4)

Левое неравенство даёт


.

Отсюда

,

(4.5)

Из (4.4) и (4.5), двигаясь в обратном порядке, легко получить (4.3). Следовательно, условие (4.3) равносильно совокупности условий (4.4) и (4.5). Из (4.4) и (4.5) получаем следствие:

(4.6)

Докажем сходимость процесса (4.1) при точной правой части. Справедлива следующая теорема.

Теорема: Итерационный процесс (4.1) при условиях

,
и (4.3) сходится в исходной норме гильбертова пространства.

Доказательство:

.

При условиях

,
и (4.3) второй интеграл сходится, так как

.

Здесь

.


так как

сильно стремится к нулю при
. Таким образом,
. Теорема доказана.

Сходимость при приближенной правой части

Докажем сходимость процесса (4.2) при приближенной правой части уравнения

. Справедлива следующая теорема.

Теорема: При условиях

,
и (4.3) итерационный процесс (4.2) сходится, если выбирать число итераций
из условия
.

Доказательство: Рассмотрим

.

Оценим

, где

Найдём на

максимум подынтегральной функции

.

Так как

Если

, то

Если

, то

при

,

поэтому

. Отсюда получим
. Поскольку
и
, то для сходимости метода (4.2) достаточно потребовать, чтобы
. Таким образом, достаточно, чтобы
. Теорема доказана.

Оценка погрешности

Для оценки скорости сходимости предположим истокопредставимость точного решения, т.е.

. Тогда

.

Для упрощения будем считать число

чётным, т.е.
и найдём оценку для
. С этой целью оценим модуль подынтегральной функции