Смекни!
smekni.com

Теорема Дирихле (стр. 1 из 4)

Содержание

Введение. 2

1. Характеры.. 3

1.1 Определение характера. Основные свойства характеров. 3

1.2 Суммы характеров. Соотношение ортогональности. 6

1.3 Характеры Дирихле. 8

2. L-функция Дирихле. 13

3. Доказательство теоремы Дирихле. 29

Введение

Простые числа расположены в натуральном ряде весьма неравномерно.

Целью данной работы является доказательство следующей теоремы о простых числах в арифметической прогрессии.

Теорема Дирихле. Если разность и первый член арифметической прогрессии есть взаимно простые натуральные числа, то она содержит бесконечное множество простых чисел.

Пусть

mn+ l, n=1,2, …,

прогрессия, удовлетворяющая условию теоремы.

Условие (m, l)=1, наложенные на числа m и e в формулировке теоремы, естественно, поскольку в случае, когда d=(m, l)>1, все члены прогрессии делятся на d и поэтому не являются простыми числами.

Сформулированная теория была впервые высказана Л. Эйлером в 1783 г. В 1798 г. А. Лежандр опубликовал доказательство для четных m, использовавшее, как выяснилось позднее, одну ошибочную лемму.

Полностью доказал теорему в 1837–1839 гг. Петер Густав Лежен-Дирихле (1805–1859), немецкий математик, автор трудов по аналитической теории чисел, теории функций, математической физике.

В 1837 г. вышли две работы Дирихле, посвященные теореме о простых числах в арифметической прогрессии. Они содержали формулировку теоремы в общем виде, однако доказательство приводилось только для случая, когда разность прогрессии есть простое число. В конце второй работы содержится построение характеров для произвольного модуля и некоторые утверждения о том, как можно доказать утверждение L(1,χ)¹0 для неглавных характеров x в одном случае. В 1839 г. Дилихле опубликовал полное доказательство теоремы о простых числах в арифметической прогрессии. С тех пор она носит его имя.

1. Характеры

1.1 Определение характера. Основные свойства характеров

Характером (от греческого хараæτήp-признак, особенность) χ конечной абелевой группы G называется не равная тождественно нулю комплекснозначная функция, определенная на этой группе и обладающая тем свойством, что если, АÎGи BÎG

χ (АВ)= χ (А) χ(В).

Обозначим через Е единичные элементы в группе G и через А-1 обратный элемент для АÎG

Характеры группы G обладают следующими свойствами:

1. Если Е-единица группы, то для каждого характера χ

χ (Е)=1 (1.1)

Доказательство. Пусть для каждого элемента АÎGсправедливо неравенство

c1(А)=c(АЕ)= c(А) χ (Е)

Из этого равенства получим, что c (Е)¹0. Теперь из равенства

c (Е)= c (ЕЕ)= c (Е) c (Е)=1

следует равенство (1.1)

2. c (А) ¹0 для каждого АÎG

Действительно, если бы χ (А) =0 для некоторого АÎG, то


c (А) χ (А-1)= c (АА-1)= χ (Е)=0,

а это противоречит свойству 1.

3. Если группа G имеет порядок h, то Аh=Е для каждого элемента АÎGСледовательно,

1= χ (Е)= χ (Аh)= χ (А)h,

то есть χ (А) есть некоторый корень степени h из единицы.

Характер χ1, обладающий свойством χ1(А)=1 для каждого элемента АÎG, называется главным характером группы G. Остальные характеры называются неглавными.

Лемма 1. Пусть Н подгруппа конечной абелевой группы G, причем G/H – циклическая порядка n, тогда для каждого характера χH– подгруппы Н существует ровно nхарактеров.

Доказательство. Рассмотрим группу G=

gkH, причем gnH=H, gnÎH и gn=h1=1.

Для каждого элемента XÎG существует и притом единственное к=кх и hх=h такое, что если 0£ кх <n, то X= gkх hх=gkh. Возьмем еще один элемент группы G, Y= gmhy, где 0£m<n. Перемножим эти два элемента

ХY= gк+mhhy.

Определим характер χ (X).

χ (X)= χ (gк h)= χ (gк) χ (n)= χ к (g) χH (h).

В данном выражении неизвестным является χ (g).


χn(g)= χ (gn)= χ (h1)= χH(h1) – данное число.

χ (g)= – n корней из 1,

то есть ξјnn(g)= χH(h1), получаем xk(g)= ξјn. Следовательно, x(g)= ξ1, …, ξn

Из полученных равенств получаем:

χ (X)= χk(g) χH(hx)= ξjkxχH (hx)

χ (Y)= χm(g) χH(hy)= ξjkyχH (hy)

Определим умножение характеров

χ (X) χ (Y)= ξjkyχH (hy) ξjk-xχH (hx)= ξjkx+kyχH (hx) χH (hy)= jk+mχH (hhy)

Для того чтобы определение выполнялось, необходимо рассмотреть степень gkx+kx. Возможны два случая:

1) Если 0£ кх + ky<n, то

кх + ky= kxy,; hxhy= hxy.

В этом случае определение выполняется.

2) Если n£ кх + ky<2n-1, то получим

кх + ky = n + kxy..

Тогда

XY= gkx+kyhxhy=ghgkx+ky-nhxhy=gkx+ky-nh1hxhy

В свою очередь 0£ кх + ky– n£n-1 Þkx+ky – n=kxy, h1hxhy= hxy.


χ (XY) = ξjkх+kу χн (hxу) = ξjkх + kу – nχн (h1) χн(hx) χн (hy) = ξjкх ξj ку ξjn χн (h1) χн(hx) χн (hy) = ξj кх χн (h) · ξj ку χн(hy) = χ (X) χ(Y).

Лемма доказана.

5. Характеры конечной мультипликативной абелевой группы G образуют конечную мультипликативную абелевую группу Ĝ.

Под произведением двух характеров χ' и х χ'' группы G будем понимать характер х, определяемый следующим свойством:

χ (AB) = χ' (A) χ'' (В)

Для любого элемента АÎG, имеем:

χ (АВ) = χ' (АВ) χ'' (АВ) = χ' (А) χ' (В) · χ'' (А) χ'' (В) = χ(А) χ(В)

Таким образом, получаем χ ' χ '' действительно является характером.

Роль единичного элемента группы G играет главный характер χ1

Обратным элементом G является:

χ2 (g1g2) =
=
=
= χ2(g1) χ2(g1)

1.2 Суммы характеров. Соотношение ортогональности

Пусть G – конечная мультипликативная абелева группа порядка h. Рассмотрим сумму:

S =

,

где А пробегает все элементы G, и сумму


Т =

где c пробегает все элементы группы характеров Ĝ.

Рассмотрим чему равна каждая из сумм.

а) Если В-фиксированный элемент группы G и А пробегает все элементы G, то АВ также пробегает все элементы группы G. Следовательно,

S·c (В) =

c (В) =
=
= S.

Получили Sc (В) = S, откуда следует, что (c (В) – 1)·S = 0. Следовательно, возможны два варианта:

1) S = 0, то c (В) – негативный характер

2) S≠0, то c (В) = 1 для каждого элемента В€Gи в этом случае c (В)= c1(В) есть главный характер и сумма S равна порядку h группы G. Таким образом,

S =

= {
(1.2)

б) Если мы умножим сумму Т на некоторый характер c’ группы Ĝ, то аналогичным образом получим

c’ (А) Т =

c’ (А) =
= Т,

Следовательно,

1) или Т = 0, то А ≠Е

2) или Т ≠ 0, то c’ (А) = 1 для каждого характера c’€ G. В этом случае согласно свойству 3§ 1, имеем А=Е. И тогда Т=h. Таким образом,


Т =

= {

1.3 Характеры Дирихле

Пусть m – положительное целое число. Определим числовые характеры по модулю m. Мы знаем, что j(m) приведенных классов вычетов по модулю m образуют мультипликативную абелеву группу порядка h=j(m). Мы можем, следовательно, рассмотреть характер этой группы. Но определение характера для приведенных классов вычета по модулю mможно перенести на множество целых чисел следующим образом. Положим