Смекни!
smekni.com

Звездная дрожь (стр. 1 из 2)

Дмитрий Вибе

Астрофизика достигла впечатляющих успехов в объяснении жизни и смерти звезд. Однако продолжаются проверка и уточнение теории звездной эволюции. Самое многообещающее научное направление в этой области — астросейсмология. Она исследует внутреннее строение звезд по дрожанию газа на поверхности этих гигантских плазменных шаров, иногда довольно сильному, но чаще едва уловимому.

Теорию звездной эволюции можно считать вершиной развития современной астрофизики. Опираясь на предположение о термоядерном источнике энергии звезд, она уверенно описывает тончайшие нюансы их судеб. И все же червь сомнения точит некоторых исследователей. Ведь мы видим только тонкий поверхностный слой звезды, и никто никогда непосредственно не наблюдал, как в сердце звезды водород превращается в гелий.

Грануляция на Солнце

Шанс заглянуть в звездные недра дала возникшая в 1960-х годах нейтринная астрономия. Благодаря высочайшей проникающей способности рождающиеся в термоядерных реакциях нейтрино беспрепятственно покидают солнечное ядро, неся информацию о протекающих там процессах. Открывался путь подтверждения термоядерной гипотезы прямыми наблюдениями. Однако регистрируемый поток нейтрино оказался в несколько раз ниже, чем предсказывала «стандартная» модель Солнца. На решение «проблемы солнечных нейтрино» ушло больше 30 лет. И только в начале XXI века было экспериментально доказано, что на пути к Земле нейтрино постоянно перескакивают между тремя состояниями, а первые нейтринные телескопы регистрировали только одно из них. Проблема успешно разрешилась, но получилось так, что вместо уточнения представлений об источниках звездной энергии, нейтринные телескопы уточнили свойства самих нейтрино. Все это лишь усилило желание астрономов проникнуть в тайну звездных недр. Тем более что там помимо термоядерных реакций идут и другие интересные процессы, например вращение и конвективное перемешивание огромных масс вещества. Эти глубинные движения тесно связаны с генерацией магнитного поля, которое на Солнце служит главным источником поверхностной активности: вспышек, протуберанцев, корональных выбросов, непосредственно затрагивающих наши земные интересы. Но как проникнуть внутрь раскаленного плазменного шара и узнать, что происходит пусть даже не в ядре, а хотя бы на относительно небольшой глубине?

Дыхание Цефеид

На первый взгляд эта задача кажется неразрешимой. Между тем методику исследования недоступных недр ученые применяют уже более столетия. Правда, ученые эти не астрономы, а геологи. Они наблюдают за сейсмическими волнами — колебаниями, которые распространяются в теле нашей планеты после естественных или искусственных встрясок. Скорость волн зависит от параметров среды. Систематически наблюдая за ними, можно построить карту распределения различных пород в земных недрах, которые, несмотря на относительную близость, столь же недоступны для непосредственного исследования, как и недра Солнца. Но раз уж твердая Земля буквально шевелится у нас под ногами, не может ли что-то подобное происходить с плазменными шарами — звездами?

Черные линии — акустические волны сжатия и расширения газа (р-моды). Изменение параметров вещества с глубиной заставляет их многократно возвращаться к поверхности, отражаясь от нее. Серые линии — гравитационные колебания, волны поднятия и опускания газа в собственном гравитационном поле (g-моды). На поверхности они почти не проявляются.

Колебания внутри Солнца

В 1894 году российский астроном Аристарх Белопольский изучал знаменитую звезду дельту Цефея, ту самую, по которой назван целый класс переменных звезд — цефеид. Оказалось, что синхронно с изменениями блеска меняется и положение линий в спектре звезды. Этот сдвиг естественно было объяснить эффектом Доплера: когда источник излучения приближается к нам, линии в его спектре «съезжают» в синюю сторону, а когда удаляется — в красную. Белопольский предположил, что цефеиды — это двойные звезды, у которых переменность блеска связана с периодическими взаимными затмениями, а переменность скорости вдоль луча зрения — с орбитальным движением звезд пары. Однако физик Николай Умов, который был оппонентом Белопольского на защите его диссертации, тогда же высказал мысль, что на самом деле движется не вся звезда, а только ее внешние слои. Догадка Умова блестяще подтвердилась благодаря исследованиям английского астрофизика Артура Эддингтона, а в 1958 году советский физик Сергей Жевакин построил теорию пульсации цефеид. Они действительно «дышат»: расширяются и сжимаются со скоростями, достигающими десятков километров в секунду. Так что дельту Цефея можно считать самым первым объектом, исследованным методами астросейсмоло-гии. Самым первым, но не самым интересным. Дело в том, что пульсации цефеидного типа охватывают лишь незначительную часть массы звезды и для детального ее изучения не годятся. Да и возникают они только в звездах с подходящими параметрами (температурой, плотностью, химическим составом), в которых из любого случайного возмущения развиваются устойчивые автоколебания. Но к чему приведет такое же случайное возмущение в звезде с «неподходящими» параметрами, не способной к пульсации цефеидного типа?

Суть дела

Изучая колебания поверхности Солнца и звезд, астрономы проникают в тайны их недр.
Гелиосейсмологи с высокой точностью определили содержание гелия в недрах солнца. Оно согласуется с представлениями физиков о синтезе элементов во время Большого взрыва и в звездах.
На основе данных о прохождении звуковых волн сквозь Солнце построена подробная карта вращения его внутренних областей.
Колебания, аналогичные тем, что происходят на Солнце, обнаружены уже на десятках звезд.

По такой звезде от места возмущения побежит во все стороны волна, часть которой уйдет вглубь звезды, часть пойдет наружу, отразится от поверхности звезды и снова устремится внутрь, пересечет звезду насквозь, опять отразится, смешается с волнами от других возмущений. А возмущений таких много: от конвективных течений, от вспышек на поверхности... В результате вся звезда гудит, подрагивает и становится желанным объектом для сейсмического исследования!

МОДЫ СОЛНЕЧНОЙ РЯБИ

На некоторое подрагивание спектральных линий Солнца еще в 1913 году обратил внимание канадский астроном Джон Пласкетт. Однако настоящая история сейсмических исследований дневного светила началась в 1962 году, когда выяснилось, что линии не просто подрагивают, а испытывают колебания с периодом около пяти минут и амплитудой, соответствующей разбросу скоростей в несколько сотен метров в секунду. То есть по поверхности Солнца постоянно гуляют волны высотой в десятки километров. Некоторое время им не придавали большого значения, считая локальным явлением, сопровождающим выход к поверхности конвективных потоков. Но к началу 1970-х годов появились детальные модели внутреннего строения Солнца, благодаря которым удалось увидеть (или услышать?) в этих колебаниях отзвуки глобальной вибрации солнечного вещества. Точнее, пятиминутные осцилляции оказались результатом сложения отдельных волн, или колебательных мод, полное число которых в спектре солнечных пульсаций составляет порядка 10 миллионов. Это акустические колебания, то есть обычные звуковые волны, представляющие собой уплотнения газовой среды. Амплитуды отдельных мод крайне малы, но, складываясь, они могут взаимно значительно усиливать друг друга.

Акустические пульсации разделяются на радиальные, при которых меняется объем Солнца, и нерадиальные, порождающие волны на его поверхности. Радиальные пульсации родственны колебаниям цефеид. Они вызываются волнами, которые уходят вертикально вниз, проходят через центр Солнца, доходят до другой его стороны, отражаются от нее, снова проходят через центр и так далее. Тонкость, однако, в том, что цефеиды (да и то не все) колеблются в так называемой фундаментальной моде, то есть раздуваются и сжимаются как целое, а «спокойные» звезды вроде Солнца при таких же пульсациях разделяются по радиусу на множество слоев, в которых сжатие и расширение чередуются: колебания происходят в обертонах. Сложнее обстоит дело с нерадиальными пульсациями — тут уже речь идет о движении отдельных «пятен» на поверхности Солнца. Они связаны с волнами, которые ушли вниз не вертикально, а под углом. Из-за того что в недрах меняется скорость звука, такие волны, достигнув некоторой глубины, разворачиваются и возвращаются к поверхности звезды недалеко от исходной точки. Там волна снова отражается и описывает внутри Солнца очередную дугу. Чем сильнее исходная волна отклонилась от вертикали, тем меньше глубина ее погружения, чаще возвраты к поверхности и мельче вызываемая ею «рябь» на поверхности Солнца.

Вращение Солнца неоднородно по широте и глубине. В нескольких десятках тысяч километров под экватором один оборот занимает 25 суток, а на поверхности у полюсов — 38 суток. Скорости уравниваются в тахоклине на глубине 200 тысяч километров.

Непрерывно следя за этой рябью, можно построить спектр акустических колебаний Солнца и сравнить его с предсказаниями различных теоретических моделей внутреннего строения нашего светила. Причем неглубокие моды «прочесывают» приповерхностные слои, а радиальные и близкие к ним колебания несут информацию не только об условиях в ядре Солнца, но и о событиях на его противоположной стороне. Благодаря этому удается фиксировать активные области до того, как они выйдут из-за края солнечного лимба, а также следить за ними уже после того, как они скроются из виду.