Смекни!
smekni.com

Природа спиральных рукавов Галактик (стр. 1 из 3)

.

Доктор физико-математических наук Ю. Н. Ефремов.

Природа колебаний.

Спиральная структура — столь распространенная и бросающаяся в глаза особенность многих галактик, что проблема ее природы уступает по своей важности разве только проблеме активности галактических ядер. Именно ядрам некоторые исследователи и приписывают порождение спиральных рукавов. Первым высказал это предположение (еще в 1928 году) Дж. Джине. Он писал: «Каждая неудачная попытка объяснить происхождение спиральных ветвей делает все более трудным сопротивление предположению, что спиральные рукава являются полем действия сил, полностью неизвестных нам, отражающих, возможно, новые метрические свойства пространства, о которых мы и не подозреваем». Джине допускал, что в ядрах галактик «в нашу Вселенную вливается вещество из каких-то других, совершенно чуждых нам пространственных измерений». Истечение вещества из ядра в сочетании с вращением и могло бы породить рукава. Однако сейчас нет необходимости привлекать потусторонние силы для объяснения спиральной структуры. Круговые орбиты звезд галактического диска, отсутствие движения вещества вдоль рукавов — уже только эти факты делают подобные объяснения несостоятельными. К тому же рукава, как правило, начинаются не в непосредственной близости от ядра, а в нескольких килопарсеках от него. Джине тем не менее был, очевидно, прав в одном: «Пока спиральные ветви остаются необъясненными, невозможно чувствовать доверие к любым предположениям и гипотезам, касающимся других особенностей туманностей, которые кажутся более легко поддающимися объяснению».

Два мнения о спиральной структуре.

На первый взгляд, спиральный узор галактик вызван их дифференциальным вращением. Лишь центральные области галактик вращаются как твердое тело, а дальше угловая скорость вращения убывает с расстоянием от центра. Поэтому любая достаточно большая и разреженная группировка звезд, в которой взаимное притяжение между звездами слабое, должна со временем превратиться в обрывок спирального рукава. Но, прежде чем галактика сделает один оборот, в этом фрагменте рукава погаснут звезды большой светимости, и он исчезнет из вида. Вместе с тем уже возникшую каким-то образом спиральную структуру дифференциальное галактическое вращение должно «размыть» за пару оборотов. Однако в 1976 году американские астрономы М. Мюллер и В. Арнет показали, что, если процесс звездообразования распространяется на соседние области, то дифференциальное вращение галактики может породить довольно длинные, хотя и не очень правильные, спиральные рукава, неоднократно появляющиеся и исчезающие за время жизни галактики. Массивные звезды образуются в газовом облаке гораздо быстрее, когда это облако испытывает повышенное давление, — приходит волна сжатия после взрыва расположенной неподалеку сверхновой или возгорания мощно излучающих 0-звезд. Массивные звезды, рождающиеся в облаке, быстро превращаются в сверхновые или 0-звезды, и, если рядом есть другие газовые облаке, эстафета звездообразования передается дальше. О возможности такого, эпидемического характера звездообразования В. Бааде говорил еще четверть века назад.

У. Герола и Ф. Сейден (США) усовершенствовали модель образования спиральной структуры, предложенную Мюллером и Арнетом, еще более приблизив ее к реальности. Эта модель привлекательна тем, что она объясняет природу спиральной структуры процессами и явлениями (дифференциальное вращение и эпидемическое звездообразование), без сомнения существующими в действительности. Тем не менее все большую популярность приобретает волновая теория спиральной структуры, которую возродили в 1964 году Ц. Лин и Ф. Шу (США), развившие идеи Б. Линдблада. Согласно волновой теории, спиральные рукава — это волны повышенной плотности вещества, вращающиеся вокруг центра галактики как твердое тело, подобно узору на волчке. Волны плотности движутся, не перенося с собой вещества, как, например, звуковые волны или волны на поверхности воды. Скорости, с которыми вращаются вокруг центра галактики спиральные рукава (волны плотности) и вещество (звезды и газ), вообще говоря, не совпадают. Достаточно близко к центру газ вращается быстрее волны плотности и натекает на спиральный рукав с внутренней стороны. Если различие их скоростей достаточно велико, возникает ударная волна, в которой плотность газа повышается раз в десять, и это сжатие газа приводит к интенсивному образованию массивных звезд. Помимо газа у внутреннего края спирального рукава концентрируется и пыль, видимая на фотографиях как темная полоса. Радиоастрономические данные подтверждают, что именно в этих темных полосах особенно велика плотность водорода.

Различие скоростей вращения спирального узора и галактического вещества уменьшается по мере удаления от центра галактики, пока эти скорости не становятся равными на радиусе коротации. Еще дальше от центра галактики спиральные рукава вращаются быстрее, чем звезды и газ, столкновение с которыми теперь должно происходить у внешнего края рукава (подразумевается, что в галактиках спиральные рукава всегда закручиваются). Однако близ радиуса коротации спиральные рукава едва заметны, и, что делается за этим радиусом, сказать трудно.

Ближе к центру галактики самые молодые звезды должны быть сосредоточены у внутреннего края рукава — там, где они и рождаются. Звезды вращаются быстрее рукава и, обгоняя его, успевают постареть и стать менее яркими или недоступными нашим телескопам, превратившись в черную дыру или белый карлик. Таким образом, в поперечном сечении спирального рукава должен существовать перепад (градиент) возрастов звезд. У внутреннего края рукава располагаются зоны наивысшей плотности газа и пыли, затем — области звездообразования и молодые звезды, у внешнего края рукава — самые старые звезды из тех, что концентрируются к рукавам.

Некое подобие волны плотности можно наблюдать в движении муравьев, если на их тропе выкопать канавку. Очень скоро плотность муравьев вблизи канавки становится много больше, чем в среднем на тропе. Муравьи довольно быстро выбираются из канавки, но в ней застревают все новые муравьи, и зона повышенной плотности у канавки сохраняется. Если теперь вообразить, что канавка перемещается вдоль тропы, аналогия с волной плотности в спиральных галактиках станет полнее. Спиральная волна плотности способна возникнуть в галактике под действием приливного возмущения от близкого спутника или в результате отклонения от осевой симметрии в распределении звезд вокруг центра галактики. Эти отклонения могут быть столь незначительны, что остаются незамеченными. Волновая теория имеет ряд убедительных подтверждений: бесспорные признаки резкого повышения плотности газа и пыли перед внутренним краем звездных спиральных рукавов, наблюдающиеся во многих галактиках, и связанные с гравитационным полем рукавов крупномасштабные отклонения от кругового вращения. Эти отклонения выявлены по лучевым скоростям звезд высокой светимости в нашей Галактике и нейтрального водорода в галактике М 81 в созвездии Большой Медведицы. По-видимому, только волновая теория может объяснить существование (хотя и редких) галактик с длинными гладкими рукавами без признаков звездообразования в них. В таких галактиках практически нет газа.

Очевидно, что эпидемическое звездообразование может происходить и при наличии спиральной волны плотности. Первое поколение массивных звезд, родившихся в этой волне, вполне способно воздействовать на окружающие газовые облака, распространяя эпидемию звездообразования дальше. Задача состоит в том, чтобы понять, в каких галактиках или их областях спиральная структура обязана своим происхождением волне плотности, а в каких — дифференциальному вращению и эпидемическому звездообразованию, и почему в той или иной галактике доминирует один из этих механизмов, Казалось бы, легче всего выяснить природу спиральных рукавов, проведя поиск градиента возрастов молодых звезд в поперечном сечении рукава. Но в далеких галактиках такой поиск не приносит определенных результатов — скорее всего из-за трудностей в интерпретации данных интегральной фотометрии и малого разрешения, а в нашей Галактике ему очень мешают наблюдательная селекция и неточность в знании расстояний. К тому же в диске Галактики из-за межзвездного поглощения оптическим телескопам доступны расстояния, обычно не превышающие 4— 5 кпк, то есть область, охватывающая не более 10% площади ее диска. Некоторые исследователи даже считают, что молодые звезды и звездные скопления в окрестностях Солнца распределены преимущественно вдоль радиусов, направленных от Солнца. Но такое распределение отражает влияние наблюдательной селекции и в особенности наличие больших пылевых облаков, резко ослабляющих блеск расположенных за ними объектов. В нашей Галактике мы подобны путникам в густом лесу— из-за деревьев не видим леса, тогда как по отношению к далеким галактикам — пролетаем над лесом слишком высоко, чтобы различить породы деревьев или рельеф местности. Надо изучать ближайшие галактики, где нам доступны отдельные звезды, где мы можем исследовать характеристики этих звезд и однозначно установить их связь с элементами галактической структуры. Эффективность исследований ближайших галактик подтверждается всей историей астрономии XX века.

Ключ к проблеме— в ближайших галактиках.

В наше время, когда внимание физиков и астрономов устремлено к границам Вселенной, стали забывать, что астрономическая картина мира родилась именно при изучении ближайших галактик, в первую 'очередь — туманности Андромеды (М31) и галактики в созвездии Треугольника (М 33). В конце 1923 года молодой астроном обсерватории Маунт Вилсон — бывший боксер и адвокат Э. Хаббл, проводя поиск новых звезд, открыл в туманности Андромеды первую цефеиду, а через год, применив уже к 12 цефеидам зависимость период — светимость, оценил расстояние до этой «туманности». Выяснилось: по размерам, составу и строению она такая же галактика, как и наша. Опираясь на цефеиды в ближайших галактиках, Хаббл смог затем определить расстояния до далеких галактик и в 1929 году показал, что красное смещение в спектрах галактик пропорционально их расстоянию от нас. Итак, Вселенная населена галактиками и расширяется. Доказательство этого остается и по сей день крупнейшим достижением астрономии XX века, незыблемым фундаментом естествознания.