Влияние температуры и коррозионно-активной среды на свойства металлов под напряжением при статических и циклических нагружениях (стр. 1 из 3)

Исследование механических свойств материалов при низких температурах.

Для определения механических свойств при низких температурах используют те же стандартные методы , что и для исследований их при комнатной или повышенной температуре .

Главным узлом всякой установки для испытаний при низких температурах является ванна (криостат) , обеспечивающая необходимые условия. При испытаниях до температуры -77К ( -196С - температура жидкого азота ) применяются двухстенные ванны из красной меди , латуни или нержавеющей стали с войлочной изоляцией . При температурах ниже -77К криостат состоит в большинстве случаев из двух вставленных друг в друга стеклянных или металлических сосудов Дьюара , пространство между которыми заполнено жидким азотом .

Температура до 153К измеряется термометрами (спиртовыми , толуоловыми , пентановыми ) , ниже 153К - термопарами ( пластиновыми , медь-константовыми ) . Иногда температура помещённого в охлаждающую среду образца определяется по прекращению кипения зеркала жидкости , при этом считается , что он принял температуру хладагента .

Хладагент Охлаждающая смесь Темпе ратура
°С °К
Твёрдая углекислота (сухой лёд ) Размельчённый сухой лёд со спиртом или ацетоном -40 ¸ -70 233 ¸ 203
Жидкий азот Жидкий азот со спиртом или бензином -100 173
Жидкий азот с петролеумным эфиром - 120 153
Жидкий азот с изолентаном -160 113
Жидкий кислород ------- -183 90
Жидкий азот ------- -196 77
Жидкий неон ------- -246 27
Жидкий водород ------- -253 20
Жидкий гелий ------- -269 4
Жидкий гелий ( с откачкой ) ------- -271,5 1,6
Гелий-3 ( с откачкой ) ------- -272,8 0,3

Определение склонности сплавов к коррозионному растрескиванию при постоянных нагрузках .

При одновременном действии статических растягивающих напряжений ( внешних или внутренних ) и коррозионной среды многие сплавы подвержены коррозионному растрескиванию .

Характерными особенностями коррозионного растрескивания являются :

1. хрупкий характер разрушения .

2. направление трещин перпендикулярно растягивающим напряжениям ; при этом трещины имеют межкристаллитный или транскристаллитный , или , наконец , смешанный характер.

3. зависимость времени до растягивания от величины растягивающих напряжений : с уменьшением растягивающих напряжений время до растрескивания увеличивается.

Коррозионному растрескиванию подвержены алюминиевые сплавы типа дуралюмина , сплавы систем Al-Mg , Al-Mg-Zn , Al-Mg-Cu , мягкие стали , коррозионные стали , медные сплавы , высокопрочные низколегированные стали , магниевые сплавы и др.

Большинство исследователей считают , что процесс коррозионного растрескивания имеет электрохимическую природу . Образование трещин при коррозии под напряжением сплавов связывается с возникновением гальванического элемента “концентратор напряжений (анод) - остальная поверхность (катод)” , с ускорением процесса распада пересыщенных твёрдых растворов , в результате чего возникают местные гальванические элементы и коррозионные трещины развиваются вследствие растворения вновь образующихся анодных участков , с механическим разрушением плёнок , избирательной коррозией пересыщенных твёрдых растворов , изменением внутренней энергии , абсорбции поверхностно-активных анионов и катионов среды и др.

Изучение кинетики развития трещины при коррозии под напряжением высокопрочных сталей методом электросопротивления показало , что процесс развития трещин складывается из трёх этапов . На первом этапе образуется коррозионная трещина . На втором этапе происходит скачкообразное развитие трещины , что свидетельствует о значительной роли механического фактора . Переход от первого этапа ко второму сопровождается значительным увеличением скорости развития трещины . На третьем этапе происходит лавинообразное развитие трещины .

При определении склонности сплавов к коррозионному растрескиванию растягивающие напряжения в образцах создаются двумя способами :

1. путём приложения постоянной нагрузки .

2. путём сообщения образцу постоянной деформации ( изгиб ) .

Полная характеристика склонности сплава к коррозионному растрескиванию может быть получена путём снятия кривых коррозионного растрескивания от величины растягивающих напряжений .

s, кг/мм(2) Рис. 1 Кривая коррозионного растрескивания стали 30ХГСНА в камере с распылённым 150 3 % NaCl .

100

50

0 25 50 75 t , сутки


Образование коррозионных трещин связано с неравномерным увеличением скорости коррозии сплава при приложении растягивающих напряжений . Если v1- cкорость коррозии в месте концентрации напряжений , v2- скорость коррозии на остальной поверхности сплава , то образование коррозионной трещины будет происходить при напряжениях , когда v1> v2 . Чем больше разность скоростей коррозии v1 - v2 , тем больше склонность сплава к коррозионному растрескиванию . Эти положения лежат в основе уравнения кривой коррозионного растрескивания .

(1) (s-sкр ) t = К , где

s - извне приложенное растягивающее напряжение ;

sкр - критическое напряжение , ниже которого не происходит коррозионного растрескивания ;

t- время до растрескивания ;

К - константа , характеризующая меру увеличения скорости распространения коррозионной трещины (1/t) при увеличении растягивающих напряжений . Чем больше К , тем в меньшей степени увеличивается скорость распространения трещины при увеличении растягивающих напряжений .

При извне приложенных напряжениях , равных или меньше sкр , коррозионного растрескивания не происходит . Величина sкр является основной количественной характеристикой сопротивления сплава коррозионному растрескиванию , чем выше sкр , тем выше сопротивление сплава коррозионному растрескиванию . Уравнению (1) удовлетворяют экспериментальные данные по коррозионному растрескиванию низколегированных высокопрочных конструкционных сталей в кислых , нейтральных и щелочных растворах и во влажной среде ; латуни в растворе аммиака ; низколегированных мягких сталей в растворе азотнокислого аммония , щелочи ; алюминиевого сплава В96 в 3 % растворе NaCl ; магниевого сплава МА2-1 в атмосферных условиях и МА3 в растворе NaCl + K2Cr2O7 ; ряда коррозионностойких сталей в 3 % растворе NaOH + 0,15% NaCl при повышенной температуре .

На рисунке (2) приведена кривая коррозионного растрескивания a - латуни в растворе аммиака ( плотность 0,94 ) при полном погружении :

s, кг/мм(2) Обращает на себя внимание тот факт , что для латуни в растворе аммиака 8 критическое напряжение меньше нуля

( -23,1 Мн/м(2) или 2,31 кг/мм(2) ) . Это 6 указывает на возможность её коррозионного растрескивания в 4 отсутствии извне приложенных 2 напряжений ( за счёт внутренних напряжений ) .

10 14 18 22 26 30 34t , час

В указанных условиях для a - латуни кривая коррозионного растрескивания описывается уравнением :

( s + 2,31 )t= 115,6 кг/{мм(2)*ч};

На величину критического напряжения оказывают влияние :

1. состав коррозионной среды ,

2. химический и фазовый составы сплава ,

3. термическая обработка ,

4. состояние поверхностного слоя ,

5. величина и характер внутренних напряжений .

Низколегированные высокопрочные стали типа 30ХГСНА обнаруживают коррозионное растрескивание в кислых , нейтральных , щелочных растворах и во влажной атмосфере . Между результатами испытаний на коррозии . Под напряжением высокопрочных сталей во влажной атмосфере ( атмосфера индустриального района , пресная , тропическая камера , и камера с распылением 3%-го раствора NaCl ) и в 20%-ном растворе серной кислоты с добавкой 30 г/л NaCl имеется определённая связь : чем больше критическое напряжение в указанном растворе , тем больше время до растрескивания напряжённых образцов во влажной атмосфере .


Видео

Copyright © MirZnanii.com 2015-2018. All rigths reserved.