Смекни!
smekni.com

Звуковые волны (стр. 4 из 5)

Так как камертоны обладают очень небольшим затуханием, то у них резонанс будет очень сильно выражен (острый резонанс). Поэтому уже небольшая разность между частотами камертонов приводит к тому, что один камертон перестаёт откликаться на колебания другого. Достаточно, например, приклеить к ветвям одного из двух камертонов кусочки пластилина или воска, и камертоны уже будут расстроены, резонанса не будет.

Если звук представляет собой ноту, т.е. периодическое колебание, но не является тоном (гармоническим колебанием), то это означает, что он состоит из суммы двух тонов: основ­ного, наиболее низкого и обертонов. На такой звук камертон должен резонировать всякий раз, когда частота камертона совпадает с частотой какой-либо одной из собственных частот колебательной системы. Опыт можно произвести с упрощенной сиреной и камертоном, при этом поставив отверстие резонатора камертона против прерывистой воздушной струи сирены. Если частота камертона равна 300 Гц, то, можно легко убедиться, что он будет откликаться на звук сирены не только при 300 прерываниях в секунду (резонанс на основной тон сирены), но и при 150 прерываниях - резонанс на первый обертон сирены, и при 100 прерываниях - резонанс на второй обертон сирены, и т.д..

Если у пианино нажать на педаль и сильно крикнуть на него, то от него можно будет услышать отзвук, который будет слышится некоторое время, с тоном (частотой) очень похожим на первоначальный звук.

Анализ и синтез звука.

При помощи наборов акустических резонаторов можно устано­вить, какие тоны входят в состав данного звука и с какими амплитудами они присутствуют в данном звуке. Такое установле­ние гармонического спектра сложного звука называется его гармоническим анализом. Раньше такой анализ действительно производился с помощью наборов резонаторов, в частности резонаторов Гельмгольца, представляющих собой полые шары разного размера, снабженные отростком, вставляющимся в ухо, и имеющие отверстие с противоположной стороны.

Для анализа звука существенно то, что всякий раз, когда в анализируемом звуке содержится тон с частотой резонатора, резонатор начинает громко звучать в этом тоне.

Такие способы анализа очень неточны и кропотливы. В на­стоящее время они вытеснены значительно более совершенными, точными и быстрыми электроакустиче­скими способами. Суть их сводится к тому, что акустическое колебание сначала преобра­зуется в электрическое колебание с сохранением той же формы, а следовательно, имеющее такой же спектр; затем уже электри­ческое колебание анализируется электрическими методами.

Можно указать один существенный результат гармонического анализа, касающийся звуков нашей речи. По тембру мы можем узнать голос человека. Но чем различаются звуковые колебания, когда один и тот же человек поёт на одной и той же ноте различные гласные: а, и, о, у, э? Другими словами, чем разли­чаются в этих случаях периодические колебания воздуха вызы­ваемые голосовым аппаратом при разных положениях губ и языка и изменениях формы полостей рта и горла? Очевидно, в спектрах гласных должны быть какие-то особенности, характерные для каждого гласного звука, сверх тех особенностей, которые создают тембр голоса данного человека. Гармонический анализ гласных подтверждает это предположение, а именно, гласные звуки характеризуются наличием в их спектрах областей оберто­нов с большой амплитудой, причём эти области лежат для каждой гласной всегда на одних и тех же частотах, независимо от высоты пропетого гласного звука. Эти области сильных оберто­нов называют формантами. Каждая гласная имеет две характерные для неё форманты.

Очевидно, если искусственным путём воспроизвести спектр того или иного звука, в частности спектр гласной, то наше ухо получит впечатление этого звука, хотя его естественный источ­ник отсутствовал бы. Особенно легко удаётся осуществлять такой синтез звуков (и синтез гласных) с помощью электроаку­стических устройств. Электрические музыкальные инструменты позволяют очень просто изменять спектр звука, т.е. менять его тембр. Простое переключение делает звук похожим на звуки то флейты, то скрипки, то человеческого голоса или же совсем своеобразным, непохожим на звук ни одного из обычных инстру­ментов.

Эффект Доплера в акустике.

Частота звуковых колебаний, которые слышит неподвижный наблюдатель в случае, если источник звука приближается или удаляется от него, отлична от частоты звука, воспринимаемой наблюдателем, который движется вместе с этим источником звука, или и наблюдатель и источник звука стоят на месте. Изменение частоты звуковых колебаний (высоты звука), связанное с относительным движением источника и наблюдателя называется акустическим эффектом Доплера. Когда источник и приемник звука сближаются, то высота звука повышается, а если они удаляются. то высота звука понижается. Это связано с тем, что при движении источника звука относительно среды, в кото­рой распространяются звуковые волны, скорость такого движения векторно складывается со скоростью распространения звука.

Например, если машина с включенной сиреной приближается, а затем, проехав мимо, удаляется, то сначала слышен звук высокого тона, а затем низкого.

Звуковые удары

Ударные волны возникают при выстреле, взрыве, электриче­ском разряде и т.п. Основной особенностью ударной волны является резкий скачок давления на фронте волны. В момент прохождения ударной волны максимум давления в данной точке возникает практически мгновенно за время порядка 10-10 с. При этом одновременно скачком изменяются плотность и темпера­тура среды. Затем давление медленно падает. Мощность ударной волны зависит от силы взрыва. Скорость распространения удар­ных волн может быть больше скорости звука в данной среде. Если, например, ударная волна увеличивает давление в полтора раза, то при этом температура повышается на 35 0С и скорость распространения фронта такой волны примерно равна 400 м/с. Стены средней толщины, которые встречаются на пути такой ударной волны будут разрушены.

Мощные взрывы будут сопровождаться ударными волнами, ко­торые создают в максимальной фазе фронта волны давление, в 10 раз превышающее атмосферное. При этом плотность среды увели­чивается в 4 раза, температура повышается на 500 0C, и ско­рость распространения такой волны близка к 1 км/с. Толщина фронта ударной волны имеет порядок длины свободного пробега молекул (10-7 - 10-8 м), поэтому при теоретическом рассмотрении можно считать, что фронт ударной волны представляет собой поверхность взрыва, при переходе через которую параметры газа изменяются скачком.

Ударные волны так же возникают, когда твёрдое тело дви­жется со скоростью, превышающей скорость звука. Перед самолё­том, который летит со сверхзвуковой скоростью, образуется ударная волна, которая является основным фактором, определяю­щим сопротивление движению самолёта. Чтобы это сопротивление ослабить, сверхзвуковым самолётам придают стреловидную форму.

Быстрое сжатие воздуха перед движущимся с большой скоростью предметом приводит к повышению температуры, которая с нарастанием скорости предмета - увеличивается. Когда ско­рость самолёта достигает скорость звука, температура воздуха достигает 60 0C. При скорости движения вдвое выше скорости звука, температура повышается на 240 0C, а при скорости, близкой к тройной скорости звука - становится 800 0С. Скорости близкие к 10 км/с приводят к плавлению и превращению движущегося тела в газообразное состояние. Падение метеоритов со скоростью в несколько десятков километров в секунду приво­дит к тому, что уже на высоте 150 - 200 километров, даже в разрежённой атмосфере метеоритные тела заметно нагреваются и светятся. Большинство из них на высотах 100 - 60 километров полностью распадаются.

Шумы.

Наложение большого количества колебаний беспорядочно сме­шанных одно относительно другого и произвольно изменяющих интенсивность во времени, приводят к сложной форме колебаний. Такие сложные колебания, состоящие из большого числа простых звуков различной тональности, называют шумами. Примерами могут служить шелест листьев в лесу, грохот водопада, шум на улице города. К шумам также можно отнести звуки, выражаемые согласными. Шумы могут отличатся распределением по силе звука, по частоте и продолжительности звучания во времени. Длительное время звучат шумы, создаваемые ветром, падающей воды, морским прибоем. Относительно кратковременны раскаты грома, рокот волн - это низкочастотные шумы. Механические шумы могут вызываться вибрацией твёрдых тел. Возникающие при лопании пузырьков и полостей в жидкости звуки, которые сопро­вождают процессы кавитации, приводят к кавитационным шумам.

В прикладной акустике изучение шумов проводится в связи с проблемой борьбы с их вредностью, для усовершенствования шумопеленгаторов в гидроакустике, а также для повышения точности измерений в аналоговых и цифровых устройствах обра­ботки информации. Продолжительные сильные шумы (порядка 90 дБ и более) оказывают вредное действие на нервную систему чело­века, шум морского прибоя или леса - успокаивающее.

Ультразвуки и инфразвуки.

Сейчас акустика, как область физики рассматривает более широкий спектр упругих колебаний - от самых низких до пре­дельно высоких, вплоть до 1012 - 1013 Гц. Не слышимые челове­ком звуковые волны с частотами ниже 16 Гц называют инфразву­ком, звуковые волны с частотами от 20 000 Гц до 109Гц - ультразвуком, а колебания с частотами выше чем 109Гц называют гиперзвуком.