Смекни!
smekni.com

Вплив процесів деформування на поверхневий шар металів (стр. 1 из 6)

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний університет «Львівська політехніка»

Кафедра «Технології машинобудування»

Курсова робота:

“ Вплив процесів деформування на поверхневий шар металів ”

Дисципліна: Наукові дослідження

Виконав:

Ст. гр.____

___________

Викладач

___________

Львів – 2009р.

Зміст

Вступ.

1. Процес формування верхнього шару металу в умовах пружної і пластичної деформації.

2. Зміни РВЕ на поверхні металів при деформуванні.

3. Дослідження структурних змін і зарядового рельєфу поверхні при втомі металевих матеріалів.

4. Закономірності формування енергетичного рельєфу металевої поверхні при контактних взаємодіях і при механічній обробці.

Висновки

Література


Вступ

Одним з центральних напрямків розвитку фізики твердого тіла, фізики металів є дослідження особливостей будови металевої поверхні та вивчення змін в її структурі і властивостях у процесі деформування. Найважливішими задачами цих досліджень є вивчення взаємозв'язку змін в іонній та електронній підсистемах металу, визначення закономірностей формування та еволюції напружено - деформованого стану поверхневого шару матеріалу в різних умовах деформування.

В роботі досліджується процес деформування поверхневого шару металів і визначення впливу деформації на характеристики напружено - деформованого та енергетичного стану поверхні. Особливий стан приповерхневого шару вимагає також розробки спеціальних експериментальних методів визначення деформаційних характеристик. Для дослідження закономірностей поверхневого деформування в даній роботі удосконалені і використані методи вимірювання роботи виходу електронів (РВЕ), контактного електричного опору (КЕО), вимірювання залишкових макроскопічних і мікроскопічних напруг, визначення механічних характеристик поверхневого шару. На основі отриманих експериментальних даних у роботі розвинуті фізичні уявлення про закономірності змін в іонній і електронній підсистемах металів у процесі деформування.

Актуальність теми. Наукова актуальність дослідження властивостей поверхневих шарів металів полягає в необхідності розвитку уявлень про фізичну природу деформування і руйнування реальних металевих матеріалів, розкритті механізму процесів, що відбуваються у приповерхневому шарі. Для встановлення фізичних механізмів деформаційних процесів і побудови відповідних теоретичних моделей, насамперед, необхідні експериментальні дослідження. Сучасні знання про фізичні і механічні характеристики приповерхневої області металів і про взаємозв'язок їх з властивостями, що характеризують міцність, розрізнені і недостатні. Практично не досліджено взаємозв’язок енергетичного стану поверхні із змінами структури приповерхневої області.

Зростаючий інтерес до вивчення фізичних і механічних властивостей приповерхневих шарів металів в останні роки, крім наукової мети, обумовлений важливими технічними застосуваннями. Прикладна актуальність проблеми визначається практично усіма задачами, що виникають при деформуванні металів і сплавів у процесі їх виробництва та експлуатації. На даний час розроблені і застосовуються на практиці різні види зміцнюючих обробок, метою яких є забезпечення необхідних властивостей поверхні. Для оптимізації існуючих способів і вдосконалення технології зміцнення необхідна розробка експериментальних методів досліджень механічних властивостей приповерхневої області, вивчення закономірностей формування оптимальних структур, розвиток

фізичних моделей, що адекватно відображають особливості протікання деформаційних процесів поблизу поверхні матеріалу. Важлива для практики проблема надійності і довговічності, наприклад, літальних апаратів, багато в чому визначається напруженим станом приповерхневого шару деталей, здатністю його протистояти розвитку процесів втоми і контактного деформування. З цієї причини в даній роботі одним з об'єктів досліджень були сплави, що використовуються для виробництва газотурбінних двигунів (ГТД).

Методи дослідження:

- вимірювання розподілу КРП по поверхні для аналізу змін енергетичного стану в процесі деформування;

- прецизійна рентгенівська дифрактометрія для визначення параметрів напружено - деформованого стану і структурних змін;

- вимір КЕО для визначень напружень і деформацій при контактних взаємодіях.

- випробування на кінетичне індентування для визначення фізичних параметрів деформування приповерхневої області;

- електронна мікроскопія для встановлення змін дислокаційної структури;

- випробування на тертя та опір втомі під впливом знакозмінних напружень, як критерій формування оптимальної кристалічної структури;

- теоретичний аналіз досліджених явищ.

Наукова новизна одержаних результатів

1. Вперше встановлені закономірності розподілу РВЕ по поверхні деформованих металів. У пластичній області спостерігається падіння РВЕ, причому більшому ступеню деформації відповідає більш значне зменшення РВЕ. При досягненні певного ступеня деформації РВЕ досягає граничного значення. Виявлений деформаційний енергетичний рельєф зумовлений виходом на поверхню дислокацій. Таким чином, методом РВЕ фіксується кінетика виходу дислокаційних ліній на вільну поверхню. Результати розрахунків лінійної густини деформаційних диполів в залежності від деформації збігаються за порядком величини з густиною слідів ковзання дислокацій.

2. Вперше розроблена нова самоузгоджена розрахункова схема РВЕ, що враховує істотні для поставленої задачі поправки до фізичної моделі “желе”: дискретність розподілу позитивного заряду; вплив релаксації іонних площин поблизу поверхні кристалу на електронний розподіл на межі металу; вплив діелектричного середовища, що граничить з поверхнею металу. Показано, що з ростом пружної деформації кристалічних ґраток концентрація електронів за межею металу спадає повільніше. Виявлено, що вплив діелектричного середовища додатково знижує величину густини електронів поблизу поверхні.

3. На основі уявлень про взаємозв'язок РВЕ і електровід’ємності атомів, а також даних скануючої тунельної мікроскопії, запропоновано нову фізичну модель і спосіб розрахунку РВЕ в залежності від параметрів пружно-пластичного деформування. Обчислення, проведені для алюмінію і міді, показали задовільне узгодження з експериментальними даними.

4. Вперше встановлено закономірності зміни РВЕ при знакозмінному деформуванні металів і сплавів. Виявлено, що зародження мікротріщин втоми відбувається на ділянці поверхні з максимальною попередньою зміною РВЕ. На основі встановленого фізичного механізму запропоновано кількісну модель кінетики структурних перетворень на поверхні металів, що включає рух дислокацій під впливом знакозмінних навантажень, вихід дислокацій на поверхню і появу заряджених сходинок, наслідком чого є зміна РВЕ. Метод вимірювання розподілу РВЕ по поверхні дає можливість прогнозувати зародження мікротріщин втоми вже на ранніх стадіях випробувань.

5. Досліджено вплив електроімпульсної обробки металів на квазістаціонарний деформований стан приповерхневих шарів. Вплив обробки імпульсним струмом проявляється в зниженні рівня макронапружень у приповерхневому шарі, збільшенні мікроскопічних напружень і в зменшенні розміру блоків кристалічної мозаїки. Показана можливість помітного збільшення опору втомі сплавів на основі титана у результаті електроімпульсної обробки за рахунок “прицільного” відпалу дефектів кристалічних ґраток і створення більш рівноважної структури біля поверхні.

6. У рамках молекулярно-динамічного моделювання термічної дії електроімпульсної обробки показано, що термічний пік навіть з не дуже високою максимальною температурою (~1000 0С) може приводити до “залікування” області кристала, яка містить дефекти типу вакансія-міжвузельний атом. Знайдено, що термічні коливання атомів активізують процес рекомбінації дефектів, направлено-орієнтуючий вплив забезпечується пружними полями дефектів..

Електроімпульсна обробка сплавів титана забезпечує підвищення міцності втоми на 25¸50 %. Розроблений на рівні винаходу новий спосіб магнітно-абразивної обробки, поліпшує якість обробки поверхні, значно збільшує довговічність деталей.

1. Процес формування верхнього шару металу в умовах пружної і пластичної деформації

Проведений літературний аналіз уявлень про залежність РВЕ від параметрів пружно-пластичного стану металів показує що у навантаженому кристалі енергія може запасатися не тільки в кристалічних ґратках, але і в електронній підсистемі. У зв'язку з цим актуальними є дослідження структури і фізичних властивостей приповерхневої області металів, обумовлених прикладеними силами, що приводять до пружних і пластичних деформацій. Зроблено висновок, що створення фізичної картини деформування металів потребує експериментальних досліджень взаємозв'язку іонної і електронної підсистем деформованих металів і розробку теорії розвитку специфічних процесів, що відбуваються у приповерхневих шарах металів і сплавів.

Розробка експериментальної техніки і методики досліджень. Для систематичного дослідження фізичних процесів, що відбуваються у відносно тонких приповерхневих шарах металевих матеріалів, необхідно було створити і використовувати адекватну експериментальну техніку. Прагнення до коректності висновків про взаємодію двох підсистем у металі при деформації вимагало комплексного методичного підходу до досліджуваних явищ. У більшості випадків для забезпечення надійних результатів необхідно було також забезпечити удосконалення цих методів з метою суттєвого підвищення точності, локальності і продуктивності вимірів.