регистрация /  вход

Линейные и нелинейные электрические цепи постоянного тока (стр. 1 из 4)

Содержание

1. Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока

1.1 Расчет линейных электрических цепей постоянного тока

1.2 Расчет нелинейных электрических цепей постоянного тока

2. Анализ электрического состояния линейных электрических цепей переменного тока: однофазных, трехфазных. Исследование переходных процессов в электрических цепях

2.1 Расчет однофазных линейных электрических цепей переменного тока

2.2 Расчет трехфазной линейной цепи переменного тока

2.3 Исследование переходных процессов в электрических цепях, содержащих конденсатор и сопротивление

Литература

1. Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока

1.1 Расчет линейных электрических цепей постоянного тока

Для электрической цепи, изображенной на (рис.1.1), выполнить следующее:

1) составить на основании законов Кирхгофа систему уравнений для определения токов во всех ветвях схемы;

2) определить токи во всех ветвях схемы, используя метод контурных токов;

3) определить токи во всех ветвях схемы на основании метода наложения;

4) составить баланс мощностей для заданной схемы;

5) результаты расчета токов по пунктам 2 и 3 представить в виде таблицы и сравнить;

6) определить ток во второй ветви методом эквивалентного генератора;

7) построить потенциальную диаграмму для любого замкнутого контура, включающего обе ЭДС.

рис.1.1
Дано: E1 =20 В, E2 =30 В, R1 =64 Ом, R2 =43 Ом, R3 =31 Ом, R4 =25 Ом, R5 =52 Ом, R6 =14 Ом, r01 =1 Ом, r02 =2 Ом. Определить: I1, I2, I3, I4, I5 .

1) Составить систему уравнений, применяя законы Кирхгофа для определения токов во всех ветвях.

Произвольно задаемся направлением токов в ветвях цепи I1 , I2 , I3 , I4 , I5 .

Составляем систему уравнений (в системе должно быть стока уравнений, скока в цепи ветвей). В нашей цепи пять ветвей, значит, в системе будет пять уравнений. Сначала составляем уравнение по первому закону Кирхгофа. В цепи с n узлами будет (n-1) уравнений, в нашей цепи три узла, значит, будет два уравнения. Составляем два уравнения, для двух произвольных узлов.

узел D: I3 =I1 +I2

узел F: I4 =I3 +I5

Теперь составляем недостающие три уравнения для трех независимых контуров. Чтобы они были независимыми, надо в каждый контур включить хотя бы одну ветвь, не входящую в предыдущую.

Задаемся обходам каждого контура и составляем уравнения по второму закону Кирхгофа.

Контур ABCD- обход против часовой стрелки

E1 =I1 (R1 +r01 ) - I2 (R3 +R6 )

Контур CDFE- обход против часовой стрелки

E2 =I2 (R3 +R6 ) +I3 R4 +I4 (R2 +r02 )

Контур EGHF- обход по часовой стрелке

E2 =I4 (R2 +r02 ) +I5 R5

ЭДС в контуре берется со знаком "+", если направление ЭДС совпадает с обходом контура, если не совпадает - знак "-".

Падения напряжения на сопротивления контура, берется со знаком "+", если направления тока в нем совпадает с обходом контура со знаком "-", если не совпадает.

Мы получили систему из пяти уравнений с пятью неизвестными:

.

Решив систему, определим величину и направление тока во всех ветвях схемы.

Если при решении системы ток получается со знаком "-", значит его действительное направление обратно тому направлению, которым мы задались.

2) Определить токи во всех ветвях схемы, используя метод контурных токов.

В заданной цепи можно рассмотреть три контура-ячейки (ABDC, CDFE, EGHF) и вести для них контурные токи Ik 1 , Ik 2 , Ik 3 .

Контуры-ячейки имеют ветвь, не входящую в другие контуры - это внешние ветви. В этих ветвях контурные токи являются действительными токами ветвей.

Ветви, принадлежащие двум смежным контурам, называются смежными ветвями. В них действительный ток равен алгебраической сумме контурных токов смежных контуров, с учетом их направления.

При составлении уравнений по второму закону Кирхгофа в левой части равенства алгебраически суммируются ЭДС источников, входящих в контур-ячейку, в правой части равенства алгебраически суммируются напряжения на сопротивлениях, входящих в этот контур, а также учитывается падение напряжения на сопротивлениях смежной ветви, определяемое по контурному току соседнего контура.

На основании вышеизложенного порядок расчета цепи методом контурных токов будет следующим:

стрелками указываем выбранные направления контурных токов Ik1 , Ik2 , Ik3 в контурах-ячейках (направление обхода контуров принимаем таким же);

составляем уравнения и решаем систему уравнений или методом подстановки, или с помощью определителей.

.

Подставляем численное значение ЭДС и сопротивлений:

или

Решим систему с помощью определителей. Вычислим определитель системы Δ и частные определители Δ1 , Δ2 , Δ3.

;
;

;
.

Вычислим контурные токи:

;
;

.

Вычислим действительные токи:

I1 =Ik1 =0,313A; I2 =Ik2 -Ik1 =0,32-0,313=0,007A;
I3 =Ik2 =0,32A; I4 =Ik2 +Ik3 =0,32+0,161=0,481A;
I5 =Ik3 =0,161A.

3) Определить токи во всех ветвях схемы на основании метода наложения.

По методу наложения ток в любом участке цепи рассматривается как алгебраическая сумма частных токов, созданных каждой ЭДС в отдельности.

а) Определить частные токи от ЭДС E1 , при отсутствии ЭДС E2 , т.е. рассчитать цепь по рисунку 1.2

рис 1.2
Показываем направление частных токов от ЭДС E1 и обозначаем буквой I с одним штрихом (I'). Решаем задачу методом "свертывания".
Ом;
Ом;
;
Ом;

Ом;

Ом.

Ток источника:

А.

Применяя закон Ома и первый закон Кирхгофа, вычисляем токи ветвей.

;

В;

В;

А;

А;

В;

В;

А;
А

Токи ветвей:

I1 ’=I1 =0,226A; I2 ’=I6,5 =0,123A;
I3 ’=I4 =0,103A; I4 ’=I2,02 =0,066A;
I5 ’=I5 =0,057A.

б) Определяем частные токи от ЭДС E2 при отсутствии ЭДС E1 , т.е. рассчитываем простую цепь по рисунку 1.3

рис 1.3
Показываем направление частных токов от ЭДС E2 и обозначаем их буквой I с двумя штрихами (I’’). Рассчитываем общее сопротивление цепи:
Ом
Ом
Ом
Ом

Ом

Ом

Ток источника:

А

Применяя закон Ома и первый закон Кирхгофа, вычисляем токи ветвей:

;

Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!