Смекни!
smekni.com

Проводниковые материалы (стр. 1 из 3)

1. Электропроводность металлов

Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных (свободных) электронов. В свободное состояние от каждого атома металла переходит от одного до двух электронов. К электронному газу применялись представления и законы статистики обычных газов. При изучении хаотического (теплового) и направленного под действием силы электрического поля движения электронов был выведен закон Ома. При столкновениях электронов с узлами кристаллической решетки энергия, накопленная при ускорении электронов в электрическом поле, передается металлической основе проводчика, вследствие чего он нагревается. Рассмотрение этого вопроса привело к выводу закона Джоуля—Ленца. Таким образом, электронная теория металлов дала возможность аналитически описать и объяснить найденные ранее экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах. Оказалось возможным также объяснить и связь между электропроводностью и теплопроводностью металлов. Кроме того, некоторые опыты подтвердили гипотезу об электронном газе в металлах, а именно:

1. При длительном пропускании электрического тока через цепь, состоящую из одних металлических проводников, не наблюдается проникновения атомов одного металла в другой.

2. При нагреве металлов до высоких температур скорость теплового движения свободных электронов увеличивается, и наиболее быстрые из них могут вылетать из металла, преодолевая силы поверхностного потенциального барьера.

3. В момент неожиданной остановки быстро двигавшегося проводника происходит смещение электронного газа по закону инерции в направлении движения. Смещение электронов приводит к появлению разности потенциалов на концах заторможенного проводника, и стрелка подключаемого к ним измерительного прибора отклоняется по шкале.

4. Исследуя поведение металлических проводников в магнитном поле, установили, что вследствие искривления траектории электронов в металлической пластинке, помещенной в поперечное магнитное поле, появляется поперечная ЭДС и изменяется электрическое сопротивление проводника.

Однако выявились и противоречия некоторых выводов теории с опытными данными. Они состояли в расхождении температурной зависимости удельного сопротивления, наблюдаемой на опыте и вытекающей из положений теории; в несоответствии теоретически полученных значений теплоемкости металлов опытным данным. Наблюдаемая теплоемкость металлов меньше теоретической и такова, как будто электронный газ не поглощает теплоту при нагреве металлического проводника. Эти противоречия удалось преодолеть, рассматривая некоторые положения с позиций квантовой механики. В отличие от классической электронной теории в квантовой механике принимается, что электронный газ в металлах при обычных температурах находится в состоянии вырождения. В этом состоянии энергия электронного газа почти не зависит от температуры, т.е. тепловое движение почти не изменяет энергию электронов. Поэтому на нагрев электронного газа теплота не затрачивается, что и обнаруживается при измерении теплоемкости металлов. В состояние, аналогичное обычным газам, электронный газ приходит при температуре порядка тысяч Кельвинов. Представляя металл как систему, в которой положительные ионы скрепляются посредством свободно движущихся электронов, легко понять природу всех основных свойств металлов: пластичности, ковкости, хорошей теплопроводности и высокой электропроводности.

2. Свойства проводников

К важнейшим параметрам, характеризующим свойства проводниковых материалов, относятся:

1) удельная проводимость g или обратная ей величина — удельное сопротивление r;

2) температурный коэффициент удельного сопротивления ТКr или ar;

3) коэффициент теплопроводности gт;

4) контактная разность потенциалов и термоэлектродвижущая сила (термо – ЭДС);

5) работа выхода электронов из металла;

6) предел прочности при растяжении sр и относительное удлинение перед разрывом Dl/l.

Удельная проводимость и удельное сопротивление проводников. Связь плотности тока J (в амперах на квадратный метр) и напряженности электрического поля (в вольтах на метр) в проводнике дается известной формулой:

J=gE.

(дифференциальная форма закона Ома); здесь g (в сименсах на метр) параметр проводникового материала, называемый его удельной проводимостью: в соответствии с законом Ома у металлических проводников не зависит от напряженности электрического поля Е при изменении последней в весьма широких пределах. Величина r = 1/g, обратная удельной проводимости и называемая удельным сопротивлением, для имеющего сопротивление R проводника длиной lс постоянным поперечным сечением S вычисляется по формуле:

r = RS/l(2–2).

Удельное сопротивление измеряется в ом – метрах. Для измерения r проводниковых материалов разрешается пользоваться внесистемной единицей Ом×мм2/м; очевидно, что проволока из материала длиной 1 м с поперечным сечением 1 мм2 имеет сопротивление в омах, численно равно r материала в Ом×мм2/м.

Диапазон значений удельного сопротивления r металлических проводников (при нормальной температуре) довольно узок: от 0,016 для серебра и до примерно 10 мкОм×м для железохромоалюминиевых сплавов, т.е. он занимает всего три порядка. Удельная проводимость металлических проводников согласно классической теории металлов может быть выражена следующим образом:

g = (e2n0l)/(2mvT)(2–3).

где е — заряд электрона; n0 — число свободных электронов в единице объема металла; lсредняя длина свободного пробега электрона между двумя соударениями с узлами решетки; т — масса электрона; vT средняя скорость теплового движения свободного электрона в металле.

Преобразование выражения (2-3) на основе положений квантовой механики приводит к формуле:

g = K02/3l(2-4).

где K — численный коэффициент; остальные обозначения — прежние.

Для различных металлов скорости хаотического теплового движения электронов vT (при определенной температуре) примерно одинаковы. Незначительно различаются также и концентрации свободных электронов п0 (например, для меди и никеля это различие меньше 10%). Поэтому значение удельной проводимости у (или удельного сопротивления r) в основном зависит от средней длины свободного пробега электронов в данном проводнике l, которая, в свою очередь, определяется структурой проводникового материала. Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления; примеси, искажая решетку, приводят к увеличению r. К такому же выводу можно прийти, исходя из волновой природы электронов. Рассеяние электронных волн происходит на дефектах кристаллической решетки, которые соизмеримы с расстоянием около четверти длины электронной волны. Нарушения меньших размеров не вызывают заметного рассеяния волн. В металлическом проводнике, где длина волны электрона около 0,5 нм, микродефекты создают значительное рассеяние, уменьшающее подвижность электронов, и, следовательно, приводит к росту r материала.

Рис. 2-1. Зависимость удельного сопротивления r меди от температуры

Температурный коэффициент удельного сопротивления металлов. Число носителей заряда (концентрация свободных электронов) в металлическом проводнике при повышении температуры практически остается неизменным. Однако вследствие усиления колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т.е. уменьшается средняя длина свободного пробега электрона l. уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 2-1). Иными словами, температурный коэффициент удельного сопротивления металлов, (кельвин в минус первой степени) положителен.

TKr =ar = (1/r) (dr/dT) (2–5)

Согласно выводам электронной теории металлов значения ar., чистых металлов в твердом состоянии должны быть близки к температурному коэффициенту расширения идеальных газов, т.е. 1/273»0,0037 К-1. При изменении температуры в узких диапазонах на практике допустима кусочно-линейная аппроксимация зависимости r (Т); в этом случае принимают, что

r2 = r1 [1+ar (T2 –T1)](2–6)

где r1, и r2 — удельные сопротивления проводникового материала при температурах Т1, и T2, соответственно (при этом T2 > Т1);

ar — так называемый средний температурный коэффициент удельного сопротивления данного материала в диапазоне температур от Т1, до Т2.

Изменение удельного сопротивления металлов при плавлении. При переходе из твердого состояния в жидкое у большинства металлов наблюдается увеличение удельного сопротивления r, как это видно, например, для меди, из рис. 2–1; однако у некоторых металлов r при плавлении уменьшается. Удельное сопротивление увеличивается при плавлении у тех металлов, у которых при плавлении увеличивается объем, т.е. уменьшается плотность; и, наоборот, у металлов, уменьшающих свой объем при плавлении, — галлия, висмута, сурьмы r уменьшается.

Удельное сопротивление сплавов. Как уже указывалось, примеси, и нарушения правильной структуры металлов увеличивают их удельное сопротивление. Значительное возрастание r наблюдается при сплавлении двух металлов в том случае, если они образуют друг с другом твердый раствор, т. е. при (утверждении совместно кристаллизуются, и атомы одного металла входят в кристаллическую решетку другого.