Смекни!
smekni.com

Ремонт электрооборудования (стр. 1 из 3)

Содержание расчетно-пояснительной записки

Введение

1. Анализ исходных данных и задачи проектирования

2. Обоснование периодичности текущего ремонта электрооборудования

2.1. Статистический метод

2.1.1. Исходные данные

2.1.2. Расчет статистических показателей

2.1.3. Выбор оптимальной периодичности

2.2. Классический метод

2.2.1 Классический метод (решение)

2.3. Метод теории надежности

3. Описание технологии текущего ремонта электродвигателя

4. Компоновка участка по проведению ТО и ТР электрооборудования

5. Выбор оборудования для диагностирования и ремонта

Заключение

Список литературы


Введение

Опыт электрификации сельского хозяйства показывает, что без хорошей работы электротехнической эксплуатационной службы только увеличение числа электроустановок не дает ожидаемого роста эффективности производства и не позволяет полностью использовать возможности электрооборудования. Эксплутационная надежность электрооборудования пока еще не удовлетворяет в достаточной мере требованиям сельскохозяйственного производства. Электродвигатели выходят из строя в 1,5…3 раза чаще, чем регламентировано в нормативной документации. Затраты на техническую эксплуатацию за срок нормативной окупаемости в 4...10 раз превышает стоимость нового электрооборудования. Все это снижает выпуск продукции и увеличивает ее себестоимость.


1. Анализ исходных данных и задачи проектирования

Сельскохозяйственное предприятие использует большой парк электрооборудования. Анализ результатов эксплуатации этого парка свидетельствует о том, что энерговооруженность труда по установленной мощности соответствует передовому уровню эксплуатации сельского хозяйства. Однако показатели надежности отстают от нормативных значений. Так, двигатели серии 4А рассчитаны на безотказную работу в течение 10 лет, а фактическое время безотказной работы до капитального ремонта составляет в производстве 3,5 года, в растениеводстве - 4 года, а подсобных предприятиях - 5 лет.

Эксплуатационная надежность электрооборудования зависит от многих факторов: периодичности проведения технического обслуживания (ТО) и текущего ремонта (ТР), наличие участка и технических средств для выполнения ТР, квалификации персонала электротехнической службы, правильного выбора типа защиты и режима использования электрооборудования и т.д.

В исходных данных на курсовое проектирование приведены сведения о работе электроприводов до критического состояния по сопротивлению изоляции, а также о размере технологического ущерба и интенсивности отказов с указанием затрат на профилактику и ремонт; годовой объем работ электротехнической службы в у.е.э.


2. Обоснование периодичности текущего ремонта электрооборудования

В зависимости от условий эксплуатации система ППРЭсх допускает отступления от нормируемой периодичности ТО и ТР. Для этого необходимо знать методы определения оптимальной периодичности профилактических мероприятий: статистический, классический и метод теории надежности.

Для решения этой задачи в исходных данных должны быть сведения о надежности изучаемого электрооборудования, о влиянии периодичности профилактик на надежность и размер технологического ущерба и др.

2.1. Статистический метод

По данному методу выбирают частный или обобщенный критерий состояния электрооборудования (например, значение сопротивления изоляции до критического состояния за некоторый период). Проводят наблюдения за выбранным электрооборудованием и по статистическим данным устанавливают закон распределения времени достижения предельного значения критерия. По полученным характеристикам распределения подбирают такую продолжительность между профилактическими мероприятиями, при которой соблюдается их предупредительный характер для заданного числа электрооборудования.

2.1.1. Исходные данные


2.1.2. Расчет статистических показателей

Объектом изучения служат 6 электроприводов, а критерием их предельного состояния - время работы до критического состояния, определяемого по сопротивлению изоляции. На рисунке 1 показана выровненная кривая плотности распределения наработки электроприводов до предельного состояния по принятому критерию. В обозначениях принято: tmin>,

, tmax — наименьшая, средняя и наибольшая продолжительности работы электропривода пускателя до предельного состояния; to - оптимальная периодичность профилактических мероприятий; σ — среднеквадратичное отклонение наработки на отказ.

Рис.1 Выровненная кривая плотности распределения наработки электроприводов до предельного состояния по принятому критерию

Если принять to =

,то профилактические мероприятия в целом окажутся запоздалыми, поскольку за этот период половина всех электроприводов достигнет предельного состояния по рассмотренному параметру. Следовательно, необходимо рассчитать оптимальную периодичность. Для этого сначала определим параметры статистического распределения.

Математическое ожидание, мес

Дисперсия, мес2

Среднеквадратичное отклонение, месс

2.1.3. Выберем оптимальную периодичность

Периодичность принято считать оптимальной

Если

, то предельное состояние будет у 67 % электроприводов, при
. Другими словами при выборе
профилактики теряют предупредительный характер.

Если принять

, то практически все электроприводы не достигнут предельного состояния и остановки машины для проведения профилактических мероприятий окажутся слишком частыми. При
лишь 15 % электроприводов достигнут предельного состояния, а для всех остальных мероприятий сохранят предупредительный характер и не будут частыми.

Таким образом, периодичность

можно считать оптимальной для электроприводов, т.к. отступления от нее в большую сторону приводят к быстрому понижению эксплуатационной надежности электроприводов, а отступления в меньшую сторону - к увеличению простоев и затрат.

2.2. Классический метод

Этот метод заключается в составлении функции цели (критерия) и исследований ее на экстремум.

Пусть для некоторого объекта, например для электропривода, затраты на одну профилактику составляют ЗП, на один капитальный ремонт ЗР, интенсивность отказов при исходной периодичности профилактик λ, технологический ущерб из-за отказа, выраженный в долях от ЗР - у*. Известно, что с увеличением периодичности Т годовые затраты на профилактики снижаются, а на ремонт, включая ущерб, возрастают.

Целевая функция удельных суммарных затрат имеет вид:

(1),

где α - показатель эффективности профилактик.

Исследуя уравнение на экстремум

находим выражение для расчета оптимальной периодичности профилактических мероприятий по критерию минимума удельных затрат:

(2)

Уравнение показывает, что значение оптимальной периодичности пропорционально затратам на профилактику и обратно пропорционально стоимости капитального ремонта, а также размеру технологического ущерба и интенсивности отказов. Наибольшее влияние на периодичность оказывает показатель а, который характеризует эффективность профилактик. Он оценивает, на сколько процентов снижается интенсивность отказов при снижении периодичности на 1%.

2.2.1. Классический метод (решение)

Исходные данные:

2.2.2. Рассчитаем оптимальную периодичность (по формуле (2)), год

Удельные суммарные затраты (по формуле (1))

Для некоторых частных случаев можно принять α = 1. Подставляя это значение в (2), а затем Т0 в (1), находим, что при оптимальной периодичности профилактик слагаемые функции цели практически равны между собой 101,04 и 101,112. Периодичность считается оптимальной в том случае, когда годовые затраты на профилактики равны годовым затратам на устранение отказов (на капитальный ремонт и на покрытие технологического ущерба).

При организации технической эксплуатации электрооборудования стремятся совместить моменты проведения обслуживания и ремонтов с технологическими паузами и с моментами обслуживания машин, на которых используется электрооборудование. Возникают и другие причины, по которым приходится отступать от оптимальной периодичности. Поэтому важно знать, в каких пределах это возможно. При решении такой задачи обычно считают допустимыми такие отступления, при которых суммарные затраты увеличиваются не более чем на 5 % по сравнению с оптимальным уровнем. Исследования экономической устойчивости функции цели показывает, что при α = 1 допустимые отклонения от оптимальной периодичности составляют ± 35%.