Смекни!
smekni.com

Электрические аппараты (стр. 20 из 57)

Класс У— непропитанные и непогруженные в жидкий электроизоляционный материал, волокнистые материалы из целлюлозы и шелка, а также другие материалы, соответствующие данному классу и другому сочетанию материалов.

Класс А — пропитанные и погруженные в жидкий электроизоляционный состав волокнистые материалы из целлюлозы или шелка, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Класс Е~ некоторые синтетические и органические пленки, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Класс В — материалы на основе слюды (в том числе на органических подложках), асбеста и стекловолокна, применяемые с органическими связующими и пропитывающими составами, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Класс Fматериалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с синтетическими связующими и пропитывающими составами, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Класс Н — материалы на основе слюды, асбеста и стекловолокна, применяемые в сочетании с кремнийорганическими связующими и пропитывающими составами, кремнийорганические эластомеры, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Класс С — слюда, керамические материалы, стекло, кварц, применяемые без связующих составов или с неорганическими или кремнийорганическими связующими составами, а также соответствующие данному классу другие материалы и другие сочетания материалов.

Изолированные и неизолированные токоведущие части аппаратов при коротких замыканиях

Короткое замыкание в электроустановках сопровождается протеканием по проводникам токов, значительно превышающих токи нормального рабочего режима. Так как длительность протекания токов короткого замыкания измеряется обычно от долей до единиц секунд, то естественно, что и допустимые температуры в конце короткого замыкания могут быть значительно выше температур, допускаемых при длительной нормальной работе.

В настоящее время довольно широко распространено мнение о нецелесообразности ограничения каким-либо ГОСТом температур при коротких замыканиях, и взамен этого предлагается предъявлять требования к аппарату: быть пригодным к дальнейшей эксплуатации после протекания тока короткого замыкания данной длительности

(1 сек, 5 сек и т. д.). Для лучшей ориентировки при проектировании электрических аппаратов приведем предельно допустимые температуры в конце короткого замыкания, которые обычно принимаются за основу при расчете устойчивости электрических аппаратов при коротких замыканиях:

а)для медных проводников неизолированных или покрытых изоляцией органического происхождения —250° С;

б)для алюминиевых проводников как изолированных, так и не
изолированных —200° С;

в)для медных проводников, покрытых изоляцией неорганического происхождения —350° С.

При таких больших температурах слой изоляции, непосредственно прилегающий к проводнику, повреждается; однако срок службы аппарата, как показывает опыт, все-таки остается довольно большим и экономически приемлемым.

Следует отметить, что при таких температурах, как 200–350о С, особое внимание при проектировании электрических аппаратов должно быть уделено уменьшению механической прочности и температурным деформациям частей электрических аппаратов во избежание неудовлетворительной работы последних.

Простейшие методы расчета превышения температуры электрических аппаратов

Понятие о видах теплообмена

При наличии разницы температур в теле в нем происходит процесс выравнивания температур из-за потока тепла от мест с более высокой температурой к местам с более низкой температурой.

По аналогичной причине происходит выравнивание температур двух тел, имеющих разные температуры и находящихся в непосредственном соприкосновении или разделенных друг от друга какой-либо средой (газом, жидкостью и др.). Процесс переноса тепла называется теплообменом или теплоотдачей. Различают три способа теплообмена: теплопроводность, конвекция, тепловое излучение.

Теплопроводностью называют явление переноса тепловой энергии непосредственно от одной части тела к другой (в чистом виде явление теплопроводности имеет место в твердых телах).

Конвекцией называют явление переноса тепловой энергии путем перемещения частиц жидкости или газа; явление конвекции всегда сопровождается явлением теплопроводности.

Различают естественную (свободную) конвекцию, когда движение частиц окружающей среды у нагретой поверхности обусловлено разностью плотностей нагретых и холодных частиц жидкости или газа, и вынужденную конвекцию, когда движение частиц окружающей среды происходит в результате действия вентилятора, насоса или ветра и пр.

Исходя из физических представлений, легко прийти к выводу, что отдача тепла конвекцией в значительной мере будет зависеть от физических свойств среды (теплопроводности, вязкости, теплоемкости, плотности), от обтекаемости тела, т. е. от его геометрической формы и расположения в пространстве, от скорости движения частиц окружающей среды около нагретой поверхности и от степени шероховатости последней. Далее, поскольку физические свойства среды зависят от температуры, то и отдача тепла конвекцией будет зависеть от температуры среды и превышения температуры нагретой поверхности относительно среды.

Тепловым излучением (лучеиспусканием) называют явление переноса тепловой энергии электромагнитными волнами. Как будет видно из дальнейшего, теплообмен излучением между нагретыми поверхностями зависит от температуры поверхностей, от размеров, геометрии, обработки и их взаимного расположения, от физических свойств материала.

Наружная поверхность нагретого тела излучает тепло на окружающие поверхности, имеющие меньшую температуру, чем поверхность нагретого тела, при этом мы будем предполагать, что газовая среда, например воздух, разделяющая поверхность нагретого тела от поверхностей, воспринимающих тепловые лучи, полностью прозрачна для последних.

При расчетах часто предполагается, что температура окружающего воздуха практически равна температуре поверхностей, воспринимающих тепловое излучение нагретой поверхности.

Жидкости и твердые тела практически не пропускают тепловых лучей, следовательно, в жидких средах имеет место только конвективный теплообмен. Следует подчеркнуть, что физическая природа всех трех способов передачи тепла совершенно различна.

Применение формулы ньютонадля расчета отдачи тепла с наружной поверхностиокружающей среде (жидкости, газу)

В электротехнической практике весьма часто приходится рассчитывать превышение температуры наружной поверхности относительно температуры жидкой или газообразной среды, омывающей нагретую поверхность. В этих случаях оказывается весьма удобной широко известная формула Ньютона

(6.25)

здесь мощность, отдаваемая конвекцией и лучеиспусканием окружающей среде, Вт;

нагретая поверхность, м2;

температура поверхности, °С;

температура окружающей среды

коэффициент теплоотдачи, учитывающий в общем случае отдачу тепла конвекцией и лучеиспусканием, вт/м2 - град. Коэффициент теплоотдачи численно равен мощности, отдаваемой нагретой поверхностью окружающей среде при
разности температур между нагретой поверхностью и окружающей средой, равной


(6.26)

В соответствии с отмеченными факторами, от которых зависит отдача тепла конвекцией и лучеиспусканием, следует подчеркнуть, что коэффициент теплоотдачи

зависит от физических постоянных (удельного веса, теплопроводности, вязкости, теплоемкости), жидкой или газообразной среды, воспринимающей тепло от нагретого тела, или наоборот, отдающей тепло твердому телу, от формы и расположения тела в жидкой или газообразной среде, от состояния поверхностей и т. д.

Практический интерес представляет расчет нагрева катушек электрических аппаратов. На основе большого количества опытов, проведенных с различными цилиндрическими катушками, можно предложить следующие приблизительные выражения для определения коэффициента теплоотдачи:

для случая, когда теплоотдающая поверхность катушек
лежит в пределах формула для коэффициента

теплоотдачи имеет вид