Смекни!
smekni.com

Механізм суперіонної провідності твердих діелектриків (стр. 6 из 8)

Такого роду аналіз дуже непростий і вимагає як філігранної експериментальної техніки, так і серйозної теоретичної основи для інтерпретації результатів. Взагалі інтерпретація спектрів являє собою дуже складну й у деяких своїх елементах навіть творчу задачу. Найчастіше рішення такої задачі вимагає не тільки спеціальних знань і володіння методами чисельної обробки результатів вимірів, але і глибокої інтуїції (хоча, очевидно, одночасно тут ілюструється і справедливість тези «ерудиція-мати інтуїції»).

Рис. 10. Функція W координатного розподілу r іону міді в твердому електроліті CuI при різних температурах

а—20° С, б—300° С, в—350° С, г — 470° С

На мал. 10. показаний результат такого роду складної обробки — положення іона міді СuІ+ щодо жорсткої підґратки, утвореної іонами І- для твердого електроліту CuІ. При 20° С іонна провідність цієї сполуки, здійсненою іонами Сu+, дуже мала, у згоді з чим просторовий розподіл іона Си+ в осередку кристалічної ґратки, представлене на графіку (мал. 10, а), має один вузький максимум.

Фізично цей максимум можна інтерпретувати як описує іон, що знаходиться у вузлі і робить теплові коливання біля свого рівноважного положення. При температурі 350° С (мал. 10, в), коли іонна провідність досліджуваної сполуки на кілька порядків вище, чітко видно, що дуже помітною стає імовірність перебування іона Си+ не у вузлі, а в положенні, яке можна назвати міжвузільним (позначено стрілкою). «Розмазаність» функції розподілу навколо цього положення свідчить про відносно високу рухливість іона, що знаходиться в ньому, Си+ . Нарешті, при температурі 470° С (мал. 10, г) ще більш збільшується імовірність перебування іона в міжвузіллі. Останнє можна виразити й інакше — збільшується частина від повного числа іонів міді, що переходять з вузлів у міжвузілля. Це збільшення повинне супроводжуватися зростанням іонної провідності, що і було встановлено незалежними експериментами.

Отже, рентгенівські промені надали можливість виразно побачити картину того, що відбувається у твердому тілі при суперіонному переході, і ця картина в загальному виявилася в дивно гарній згоді з якісними представленнями про часткове плавлення.

Результати рентгеноструктурного аналізу були в суттєвій частині підтверджені даними, отриманими за допомогою інших методов.дослідження кристалів, особливо нейтронографії. Нейтронографія базується на вивченні будівлі молекул, рідин і твердих тіл за допомогою розсіювання нейтронів. Нейтрони — це елементарні частки з масою, приблизно рівній масі ядра водню (протона), але не мають, як ясно вже з назви, електричного заряду. Нейтрони входять до складу атомних ядер і можуть бути вибиті з них при бомбардуванні ядер потоком часток ззовні. Саме таким шляхом (бомбардуванням ядер берилия ядрами атома гелію) у 1932 р. уперше були отримані «вільні» нейтрони.

Перші роботи в області нейтронографії були виконані незабаром після закінчення другої світової війни і належать в основному чудовому італійському фізику Энрико Фермі. Як джерело нейтронів Фермі використовував ядерний реактор, їм же вперше сконструйований. Нейтронографічні експерименти також здійснюються на пучках нейтронів, що випускаються з ядерних реакторів (зрозуміло, незрівнянно більшої потужності).

Сутть методу структурної нейтронографії ґрунтується на явищі дифракції нейтронів, аналогічної по своїй фізичній природі дифракції рентгенівських променів. І хоча рентгенівські промені — це електромагнітні хвилі, а нейтрони-згустки речовини, «кульки», вони, виявляється, теж можуть формувати дифракційну картину.

Як було встановлено ще на зорі розвитку квантової механіки, усі частки, зокрема, нейтрони, виявляють хвильові властивості. Такого роду подвійність закладена в самій природі матерії й іменується у фізику корпускулярно-хвильовим дуалізмом (корпускула по-латинському означає «тільце», «маленька частка»). Зв'язані з рухом часток хвилі називаються хвилями де Бройля по імені французького фізика-теоретика, що уперше ввів представлення про ці хвилі. Довжина хвиль де Бройля λв залежить від маси і швидкості частинки. Нейтрони, які рухаються з такою швидкістю, що їхня кінетична енергія приблизно дорівнює чи трохи перевищує типові для твердого тіла енергії теплових коливань, називаються тепловими (звичайно згадані енергії складають декілька сотих часток электронвольта). Виявляється, що для теплових нейтронів довжина хвилі λв складає 10-6 – 10-7 нм, що приблизно збігається з міжатомними відстанями в кристалі.Отже, завдяки наявності у нейтронів хвильових властивостей потоки теплових нейтронів, як і потоки рентгенівських променів, можна використовувати для вивчення структури кристалів. Зокрема, спектр їхнього розсіювання на періодичних структурах, як і спектр розсіювання рентгенівських променів, містить дифракційні максимуми, тому будова твердих електролітів вивчається методами як рентгенівського, так і нейтронного аналізу.

Разом з тим фізична природа взаємодії нейтронів з речовиною інша, чим рентгенівських променів, що визначає специфіку і найбільш ефективні області застосування кожного з методів. Рентгенівські промені розсіюються завдяки дії електричних полів, тобто електронними оболонками атомів і іонів, а нейтрони— через ядерні сили і тому — атомними ядрами. Унаслідок такої вибірковості структурна нейтронографія має ряд особливостей.Специфічний характер взаємодії нейтронів з атомними ядрами призводить до того, що інтенсивність нейтронного розсіяння для різних хімічних елементів несистематичним чином залежить від порядкового номера, Z елемента в періодичній системі Менделєєва.

Зокрема, у різкому контрасті з випадком розсіяння , рентгенівських променів для нейтронів здібності легких і, розсіюючих, важких елементів виявляються близькими один до одного. Тому вивчення структури сполук легких елементів з важкими є специфічною областю структурної нейтронографії; багато матеріалів, у яких здійснюється швидкий іонний транспорт, відносяться до сполук саме такого типу. З іншої сторони (і це теж практично важливо при дослідженні твердих електролітів), нейтронографічно дуже зручно вивчати сполуки елементів, що мають великі, але близькі номера Z у періодичній системі; для рентгенівських променів такі елементи помітити дуже важко, тому що їх електронні оболонки містять майже однакові числа електронів.

Граничний випадок тут — дослідження сполук різних ізотопів одного і того ж елемента, чи ізотопічних домішок. Атомні ядра ізотопів мають однаковий електричний заряд і відрізняються лише кількістю нейтронів. Найпростіший і в той же час найважливіший приклад — звичайний водень і так званий важкий водень — дейтерій D. Ядро першого являє собою «голий» протон, ядро другого — сполука протона і нейтрона (існує ще третій ізотоп — надважкий водень, чи тритій, ядро якого складається з протона і двох нейтронів). Оскільки ізотопи одного елемента мають однаковий електричний заряд ядра і тому однакова електронна будівля, рентгенографно вони абсолютно нерозрізнені. Нейтронографічно, однак, вони розпадаются так , як різні елементи.

Щільність потоку нейтронів у пучках навіть самих могутніх ядерних реакторів на кілька порядків менше щільності потоку випромінювання від рентгенівської трубки, тому нейтронографическая апаратура й експеримент досить складні. Інтенсивність розсіювання нейтронів під різними кутами фіксується не на фотопластинку або фотоплівку, а за допомогою спеціальних лічильників. Обробка сукупності отриманих результатів, як і більшості інших обчислень у структурному аналізі, здійснюється на комп’ютерах по спеціальних програмах. У результаті можуть бути отримані карти розподілу ядерної щільності (мал. 11), аналогічні картам зарядової щільності (див. мал. 8), одержуваним з даних по дифракції рентгенівських променів.

На мал. 11, а приведена карта ядерної щільності, знайденої для сполуки ванадію V з дейтерієм D. Атоми ванадію в цій сполуці формують объемно-центрированную кубічну ґратку (ОЦК-решітку). Така ґратка утворюється, якщо формуючі її частки розміщаються в кутах і в центрі куба. Структурний елемент ОЦК-решітки виходить із зображеної на мал. 2, а, якщо центральний атом (світлий кружок) уявно замінити на чорний. Безліч таких підбудованих один до одного центрованих кубів і утворюють Оцк-решітку. Атоми дейтерію розміщаються між атомами ванадію усередині утворених ними чотиригранників (тетраедрів). Площина, для якої побудована карта, перетинає чотири атоми дейтерію.

Дейтерид ванадію не має іонну провідність, і це чітко видно на представленій карті: атоми дейтерію локалізовані в малій області усередині тетраедрів, а ядерна густина у мівузільному просторі надзвичайно низька. Інша картина виникає при нейтронографічному дослідженні йодиду срібла AgІ при температурі 160° С, тобто в суперіонному стані (ά-фазі) трохи вище температури переходу (147° С). Атоми йоду