Смекни!
smekni.com

Нерівноважні поверхневі структури реакційно-дифузійних систем типу активатор-інгібітор (стр. 2 из 7)

Апробація результатів роботи

Матеріали дисертаційної роботи доповідались на: ІІІ з’їзді українського біофізичного товариства (Львів, жовтень 2002); ХІ Міжнародній науковій конференції ім. академіка М. Кравчука (Київ, травень 2006) та щорічних наукових конференціях Інституту хімії поверхні ім. О.О. Чуйка НАН України (Київ, травень 2006, травень 2007). Вони також були оприлюднені на міжнародних конференціях: Тhe 5th International Conference on Biological Physics ICBP (Gothenburg, Sweden, August, 23-27, 2004); Втором Евразийском конгрессе по медицинской физике и инженерии „Медицинская физика 2005”, (Москва, Россия, июнь 2005).

Публікації

Основні результати дисертації опубліковано у 6 статтях у вітчизняних тазарубіжних фахових виданнях, 6 тезах доповідей на вітчизняних та міжнародних конференціях.

Структура дисертаційної роботи. Дисертація складається зі вступу, чотирьох розділів, висновків, списку використаних літературних джерел із 222 найменувань, містить 59 рисунків та дві таблиці. Повний обсяг дисертації становить 166 сторінок машинописного тексту.

ОСНОВНИЙ ЗМІСТ РОБОТИ

Увступі обґрунтовано актуальність теми дисертації, сформульовано мету і задачі досліджень, обговорено наукову новизну і практичне значення одержаних здобувачем результатів, показано зв’язок дисертаційної роботи з науковими програмами Інституту хімії поверхні ім.О.О. Чуйка НАН України.

У першому розділі розглянуто сучасний стан експериментального та теоретичного дослідження процесів самоорганізації у реакційно-дифузійних системах та проаналізовано механізми виникнення у них просторово-часових структур.

У другому розділі розглянуто елементи лінійної теорії стійкості та теорії біфуркацій, а також особливості методу імпедансної спектроскопії як методу дослідження лінійної стійкості електрохімічних систем.

У третьому розділі розглянута поведінка канонічної моделі типу активатор-інгібітор - моделі ФітцХ’ю-Нагумо у її повній версії під дією постійної та періодичної стимуляції для нульвимірного, одновимірного та двовимірного випадків. Модель ФХН описує просторово-часову поведінку двох динамічних змінних - активатора

та інгібітора
:

,
, (1)

де

- лапласіан у розглядуваному одно- чи двовимірному випадках,

- безрозмірні часова і просторові змінні.

При моделюванні функціональних властивостей мембран нервових клітин, змінна

розглядається як трансмембранний потенціал, а змінна
- як рефракторність, що визначає стан збудливості нервової клітини. При цьому функція збудження,
, відповідає вольт-амперній характеристиці повного іонного струму через мембрану, а функція
є швидкістю відновлення. Постійні параметри
характеризують фізіологічний стан системи, зокрема параметр
розглядають як зовнішній стимулюючий струм. Параметр
. Параметр
відповідає рівню збудження системи. Параметри
та
є відповідно коефіцієнтами дифузії активатора та інгібітора. Через просторові та часові константи системи вони запишуться як
та
, де
і
євідповідно просторовими константами активатора та інгібітора, а
- їх часовими константи. Малий параметр
є відношенням часових шкал активатора та інгібітора, а саме
. Цей малий параметр та коефіцієнти дифузії не впливають на кількість стаціонарних точок системи ФХН, але від них залежить їх стійкість.

Динамічні режими системи ФХН. Бістабільний режим. Завдяки N-подібній формі нулькліни активатора система ФХН може відтворювати властивості трьох основних категорій реакційно-дифузійних систем: збудливих, систем Хопфа-Тюрінга (ХТ) та бістабільних. Якісні зміни поведінки таких систем відбуваються стрибкоподібно при досягненні контрольним параметром системи свого біфуркаційного значення. У збудливій системі при біфуркації Хопфа виникають коливання, у моностабільній системі при біфуркації „сідло-вузол” виникає ще один стаціонарний стан (бістабільність).

За контрольний параметр системи ФХН був вибраний параметр зовнішньої сили, були встановлені області його значень, де реалізуються основні динамічні режими системи ФХН. Як було встановлено, існують дві області значень параметрів

та
, що визначають умови реалізації моностабільних (збудливого та режиму ХТ) і бістабільного режимів. Графічно ці області розділяються кривою
. Для значень параметра
, які лежать у межах
, та будь-яких значеннях параметра
маємо випадок лише однієї стаціонарної точки (стійкої або нестійкої) тобто реалізацію у системі ФХН моностабільних режимів. Для значень параметра
з області
та значень параметра
з інтервалу
маємо реалізацію у системі ФХН бістабільного режиму, де

, (2)

. (3)

При значеннях

та
у системі ФХН відбувається біфуркація „сідло-вузол”.

Режим Хопфа-Тюрінга системи ФХН. Як відомо, нестійкість Хопфа є локальною динамічною нестійкістю, що виникає у нелінійній системі з кількома часовими шкалами. У фазовому просторі системи вона викликає появу нового атрактору - граничного циклу (замкненої орбіти). У системі типу активатор-інгібітор, вона виникає, коли активатор змінюється у часі швидше, ніж інгібітор. У системі ФХН відношення часових шкал активатора

та інгібітора
визначається значенням малого параметра
. На противагу біфуркації Хопфа, біфуркація Тюрінга не є динамічною. Її називають біфуркацією викликаною дифузією. Вона можлива у системі, де активатор має менший коефіцієнт дифузії, ніж у інгібітора, тобто там, де діє короткодіючий активаторний процес (процес самоприскорення зростання активатора) та далекодіючий інгібіторний процес (процес сповільнення зростання активатора). Критичні значення параметра зовнішньої сили
, що визначають області реалізації біфуркації Хопфа та Тюрінга, були знайдені з аналізу характеристичного рівняння системи ФХН

, (4)