Смекни!
smekni.com

Нерівноважні поверхневі структури реакційно-дифузійних систем типу активатор-інгібітор (стр. 6 из 7)

5. Показано, що область потенціалів, де спостерігається нестійкість Хопфа, зменшується зі зменшенням радіуса електрода. Останнє викликає також зміщення біфуркаційної частоти електрохімічної системи в область більш високих частот. При збільшенні товщини дифузійного шару Нернста біфуркаційна частота зміщується в область більш низьких частот для сферичного електрода одного й того самого радіусу.

СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

1. Gichan O.I., Grechko L.G., Levchuk Yu.N. The nonlinear dynamics of the excitable biological membranes in the FitzHugh-Nagumo model // Physics of the alive. - 2001. - V. 9, № 2. - P. 97-108.

Здобувачем розраховано умови виникнення та границі існування стійкого граничного циклу, що відповідає надкритичній біфуркації Хопфа у точковій системі ФХН при її стимуляції постійним струмом. Розраховано його період та поправки до нього. Проведено чисельне моделювання впливу різних умов періодичної стимуляції на поведінку системи ФХН.

2. Булавин Л.А., Гичан О.И., Гречко Л.Г. Точное решение редуцированной системы ФитцХью-Нагумо для возбудимых биологических мембран // Доповіді НАН України. - 2002. - № 8. - С.75-79.

Здобувачем отримано формулу точного розв’язку редукованої системи ФХН при її стимуляції постійним струмом. Чисельно проаналізовано залежність параметрів розв’язку від цього контрольного параметру системи.

3. Гічан О.І., Лерман Л. Б., Гречко Л. Г., Склярів Ю.П. Просторово-часові структури в моделі ФітцХ’ю-Нагумо для збудливого та бістабільного середовищ // Вісник Київського університету. Серія фіз.-мат. науки. - 2005. - № 1. - с.311-318.

Здобувачем проведено теоретичне дослідження властивостей просторово-часових структур, що виникають у одновимірній системи ФХН, у результаті нестійкостей Хопфа та Тюрінга.

4. Булавін Л.А., Гічан О.І., Гречко Л.Г. Нові типи динамічних структур у системі ФітцХ’ю-Нагумо // Доповіді НАН України. - 2006. - № 10. - С. 69-74.

Здобувачем розраховано значення параметрів, що відповідають реалізації у системі ФХН біфуркацій Хопфа і Тюрінга. Для цих областей значень параметрів отримано нові типи поверхневих просторово-часових структур.

5. Гічан О.І., Гречко Л.Г. Змішані режими моделі ФітцХ’ю-– Нагумо: взаємодія та конкуренція біфуркацій Хопфа та Тюрінга // Вісник Київського університету. Серія фіз.-мат. науки. - 2007. - № 4. – С. 311-315.

На основі чисельного моделювання та раніше отриманих здобувачем аналітичних результатів проведено аналіз розвитку поверхневих структур, зумовлених спільною дією біфуркацій Хопфа та Тюрінга у моностабільній двовимірній системі ФХН.

6. Потоцкая В.В., Гичан О.И., Омельчук А.А., Волков С.В. Особенности поведения электрохимической системы при неустойчивости Хопфа для сферического электрода // Электрохимия. – 2008. – Т. 44, № 5. – С. 641-648.

Здобувачем виконані чисельні розрахунки, що дозволяють встановити зв’язок між розмірами сферичного електрода, фарадеєвським імпедансом і нестійкістю Хопфа у запропонованій електрохімічній системі.

7. Гічан О.І., Гречко Л.Г. Нелінійна динаміка біологічних збудливих мембран в моделі ФітцХ'ю-Нагумо // Тези доповідей ІІІ-го з'їзду Українського Біофізичного товариства, Львів, 2002, с. 157.

8. Gichan O.I., Grechko L.G. The FitzHugh-Nagumo model: responces to different stimulation regimes // Abstr. of the 5-th International Conference in Biological Physics ICBP, Gothenburg, Sweeden, 2004, р. 123.

9. Гичан О.И. Биологические возбудимые среды: особенности автоволновых процессов при различных режимах стимуляции // Материалы ІІ-го Евразийского конгресса по медицинской физике и инженерии „Медицинская физика 2005”, Москва, 2005, с. 271.

10. ГічанО.І. Модель ФітцХ’ю-Нагумо: біфуркації та динаміка // Матеріали Одинадцятої Міжнародної конференції ім. акад. М. Кравчука, Київ, 2006, с. 66.

11. ГічанО.І. Процеси самоорганізації у реакційно-дифузійній системі типу активатор-інгібітор // Автореферати доповідей Всеукраїнської конференції молодих вчених „Наноматеріали в хімії, біології та медицині”, Київ, 2006, с. 17-19.

12. ГічанО.І. Нестійкості та структури реакційно-дифузійних систем типу активатор-інгібітор // Автореферати доповідей Всеукраїнської конференції молодих вчених „Наноматеріали в хімії, біології та медицині”, Київ, 2007, с. 16.


АНОТАЦІЯ

Гічан О.І. Нерівноважні поверхневі структури реакційно-дифузійних систем типу активатор-інгібітор. – Рукопис.

Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.04.18 – фізика і хімія поверхні. – Інститут хімії поверхні ім.О.О. Чуйка НАН України, Київ, 2008.

Дисертацію присвячено теоретичному дослідженню процесів самоорганізації у реакційно-дифузійних системах. За модельні вибрано дві системи типу активатор-інгібітор. Для першої системи - моделі ФітцХ’ю-Нагумо (ФХН), що вважається канонічною, встановлено умови виникнення низьковимірних просторових та часових структур при нестійкостях Тюрінга та Хопфа. Розглянута повна версія моделі ФХН у її нульвимірному, одновимірному та двовимірному випадках. Результати представлені через параметр зовнішньої сили, що розглядається як можливість зовнішнього контролю за поведінкою системи, виникненням у ній того чи іншого типу структур. Для другої модельної системи - електрохімічної системи з електрокаталітичною реакцією на поверхні сферичного мікроелектроду у потенціостатичних умовах розраховані значення частот, при яких у системі виникає біфуркація Хопфа. Встановлено вплив на ці біфуркаційні значення розмірів сферичного електрода та товщини дифузійного шару Нернста.

Ключові слова: просторово-часові структури, реакційно-дифузійні системи, модель ФітцХ’ю-Нагумо, електрокаталітичні поверхневі реакції, нестійкості Хопфа та Тюрінга, фарадеєвський імпеданс, дифузійний шар Нернста, сферичний мікроелектрод.

АННОТАЦИЯ

Гичан О.И. Неравновесные поверхностные структуры реакционно-диффузионных систем типа активатор-ингибитор. – Рукопись.

Диссертация на соискание ученой степени кандидата физико-математических наук по специальности 01.04.18 – физика и химия поверхности. – Институт химии поверхности им. А.А. Чуйко НАН Украины, Киев, 2008.

Диссертация посвящена теоретическому исследованию неустойчивостей Хопфа и Тюринга в неравновесных системах. В качестве модельных были выбраны система ФитцХью-Нагумо, которая является канонической реакционно-диффузионной системой типа активатор-ингибитор, и электрохимическая система, в которой проходит электрокаталитическая реакция на поверхности сферического микроэлектрода. Это так называемые N-системы. В первой N-подобную форму имеет нульклина динамической переменной активатора, что позволяет системе ФХН воспроизводить такие важные свойства неравновесных систем как возбудимость и бистабильность. Во второй N-подобную форму имеет вольтамперная кривая, что содержит область так называемого отрицательного дифференциального сопротивления, в которой обычно и возникают рассматриваемые неустойчивости. В этой системе потенциал играет роль активатора, а концентрация электроактивных частичек в приэлектродном слое - роль ингибитора. Для точечной системы ФХН как эмпирической модели возбудимых биологических мембран на основе бифуркационной теоремы Хопфа найдены условия существования устойчивых периодических колебаний при стимуляции системы постоянным внешним током. Найдена зависимость периода колебаний от этого контрольного параметра системы. С помощью численного моделирования проанализировано поведение точечной системы ФХН при различных условиях периодической стимуляции (форме и частоте периодических импульсов). Для редуцированной одномерной системы ФХН, в определенном диапазоне значений стимулирующей постоянной силы, найдено ее точное решение, которое представляет собой кинк (гиперболический тангенс), распространяющийся с определенной постоянной скоростью, которая кроме параметра постоянной внешней силы зависит от коэффициента диффузии активатора и уровня возбудимости системы. На основе модели ФХН исследован вопрос возникновения и развития одномерных и двумерных пространственно-временных структур, обусловленных потерей устойчивости однородного состояния через бифуркацию Хопфа и Тюринга. На основе метода импедансной спектроскопии установлены условия возникновения бифуркации Хопфа в модельной электрохимической системе с одним сортом электроактивных частиц, массоперенос которых рассматривался в рамках диффузионной модели Нернста, предполагающей, что толщина диффузионного слоя одинакова по всей поверхности сферического микроэлектрода. Показано, что в такой системе природу неустойчивости обуславливает отрицательный импеданс, который определяется взаимодействием процессов массопереноса и адсорбции-десорбции, зависящих от потенциала и предшествующих реакции переноса заряда. Показано, что при потенциостатическом режиме осцилляции возникают, если фарадеевский импеданс стремится к нулю с отрицательной стороны Re(Zf(w)), когда w®¥. Значение контрольного параметра w в точке бифуркации Хопфа зависит от радиуса электрода и толщины диффузионного слоя Нернста. Существуют две точки бифуркации Хопфа (две частоты), в которых мнимая и реальная части фарадеевского импеданса обращаются в нуль. Область потенциалов, в которой наблюдается неустойчивость Хопфа, уменьшается с уменьшением радиуса электрода. Последнее вызывает также смещение бифуркационной частоты в область более высоких частот. При увеличении толщины диффузионного слоя Нернста бифуркационная частота смещается в область более низких частот для сферического электрода одного и того же радиуса.

Ключевые слова: пространственно-временные структуры, реакционно-диффузионные системы, модель ФитцХью-Нагумо, электрокаталитические поверхностные реакции, неустойчивости Хопфа и Тюринга, фарадеевский импеданс, диффузионный слой Нернста, сферический микроэлектрод.