Смекни!
smekni.com

Уравнения Больцмана, Лиувилля, Боголюбова (стр. 1 из 3)

Уравнения Боголюбова


Уравнения Больцмана, идея которого принадлежит самому Больцману, не может считаться строгим. Действительно, запись этого уравнения, как уравнения непрерывности в m-пространстве с источниками (интеграл столкновений) в правой части, предполагает, во-первых, что изменение во времени функции распределения f(r, v, t) аддитивно относительно двух процессов, имеющих различное происхождение. Члены vi df/dxi и wi df/dvi в левой части

или

характеризуют потоки газа, возникающие вследствие существования градиента плотности и внешних полей, в то время как правые части возникают вследствие учета столкновений молекул. Таким образом предполагается, что потоки и столкновения не влияют друг на друга. Во-вторых, в интеграле столкновений значения функций

берутся в одной и той же точке пространства r, в то время как с учетом конечных размеров молекул координаты в функциях
и в функциях
должны быть выбраны различными.

Далее, как мы уже упоминали, классический вывод уравнения Больцмана предполагает отсутствие корреляций между скоростями молекул. Наконец, что наиболее существенно, в уравнении Больцмана учитываются только попарные столкновения молекул, и нет более или менее очевидного рецепта, позволяющего учесть столкновения групп из трех, четырех и более молекул. Между тем ясно, что учет таких процессов существен для плотных газов.

В приближении парных соударений длина свободного пробега обратно пропорциональна плотности газа

(s— эффективное сечение парных столкновений).

Как известно, это приводит к тому, что коэффициенты переноса: À — коэффициент теплопроводности, a — коэффициент вязкости, не зависят от плотности п и, стало быть, от давления. При учете многочастичных столкновений выражение для lдолжно иметь вид

,

где коэффициенты a, А возникают в связи с учетом трехчастичных, коэффициенты b и В — в связи с учетом четырехчастичных и т. д. столкновений. В результате для длины пробега и для коэффициентов переноса должны возникнуть вириальные разложения такого же типа, какие возникают в статистической физике для уравнения состояния неидеального газа.

В связи со сказанным целесообразно подойти более строго к проблеме вывода кинетического уравнения и к его возможным обобщениям. Это можно сделать с помощью весьма общего и строгого метода, предложенного Н. Н. Боголюбовым, к краткому изложению которого мы и переходим.

Имеем систему из N одинаковых частиц, состояние которой в классической механике мы будем задавать с помощью 2N векторов ri, vi. Совокупность ri, и vi мы для краткости будем обозначать символом xi а произведение d3rid3vi - символом dxi.

Введем функцию распределения F(N)(x1, … ,xN, t) в Г-пространстве, считая координатами бN-мерного Г-пространства координаты и проекции скоростей всех частиц. Выражение

F{N)(х1, х2, ... , xN, t)dx1dx2 ... dxN

дает вероятность того, что изображающая точка в Г-пространстве находится в объеме dx1, dx2 ... dxN, а функция F(N) нормирована на единицу

ò F{N)(х1, х2, ... , xN, t)dx1dx2 ... dxN=1. (1)

Будем в дальнейшем считать, что внешние поля отсутствуют и частицы взаимодействуют с потенциалом взаимодействия U(rik) = ти (rik). Для исключения граничных эффектов мы будем рассматривать термодинамический предел, при котором

, a w=V/N остается конечным.

Дальнейшие рассуждения основаны на уравнении Лиувилля, которое мы запишем здесь в виде

, (2)

где оператор

называется оператором Лиувилля и определяется формулой

(3)

причем wi, k = -ди (ri,k)/dri - ускорение, придаваемое i-й частице взаимодействием с k-й частицей. Функции распределения r(р, q) и функции F{N) (ri, vi, t) по существу идентичны, и, следовательно, F(N) (xi, t) подчиняется уравнению

Следует обратить внимание читателя на следующие принципиальные свойства уравнения Лиувилля.

1. Функция F(N) (х1, х2, ... , xN, t) лишь «насильственно» была нами связана с вероятностными представлениями. Мы могли бы рассматривать ее не как плотность вероятности для единичной системы с координатами ri, vi, а как произвольно заданную в начальный момент времени функцию распределения для ансамбля систем - ансамбля Гиббса.

Иначе говоря, мы можем себе представить, что при t = 0 мы «приготовляем» ансамбль, т. е. произвольным образом «высыпаем» изображающие точки в фазовое пространство, задавая тем самым F{N) {x1, ..., xN, 0). В дальнейшем эти «высыпанные» точки «плывут» по своим фазовым траекториям, подчиняясь исключительно законам механики. Таким образом, уравнение (2) вовсе не имеет статистического вероятностного содержания, а несет в себе только чисто механическую информацию.

2. Уравнение Лиувилля, являясь уравнением первого порядка по времени, описывает причинно-обусловленное изменение функции F(N)(х1, ..., xN, t). При заданном ее начальном значении F(N) (х1, ... , xN, 0) уравнение (2) однозначно предсказывает все будущие значения F(N)(xi,t).

3. Как и всякое уравнение классической механики, уравнение Лиувилля обратимо во времени. Это значит, что при замене t на -t оно остается неизменным. Следовательно, наряду с «прямым» движением экземпляров ансамбля, столь же возможным при соответствующем изменении начальных условий, является и «обращенное» движение.

4. В свете сказанного неудивительно, что решение уравнения Лиувилля эквивалентно решению динамической задачи, т. е. нахождению всех динамических траекторий. Формально это видно из того, что характеристики уравнения (2) имеют вид

,

из которых следуют уравнения динамики в форме Ньютона

.

Физически это следует из того, что мы можем «приготовить» начальный ансамбль в виде

, т. е. «высыпать» все изображающие точки в одну точку фазового пространства. В силу однозначности решения уравнения Лиувилля при заданном начальном условии движение изображающей точки и будет описывать эволюцию одной единственной динамической системы. Таким образом, наряду с методами решения задач динамики, основанными на интегрировании уравнений Ньютона, Лагранжа, Гамильтона и Гамильтона -Якоби, существует еще один метод - метод интегрирования уравнения Лиувилля. Однако для системы с огромным числом частиц этот метод столь же непригоден и столь же не нужен, как и все остальные, а для решения задач макроскопической неравновесной физики следует переходить к вероятностным методам.

Введем с этой целью n-частичные функции распределения

. (4)

Эти функции подчинены следующему из (1) условию нормировки:

, (5)

и если мы придаем вероятностный смысл функции F(N) (х1,....,xN, t),

то и функции

приобретают статистическую интерпретацию. Здесь и в дальнейшем мы опускаем для краткости индекс (N) в обозначении F(nN). Выражение
представляет собой вероятность того, что первые п частиц системы (а не ансамбля систем!) имеют координаты и скорости, лежащие в пределах (ri, ri + dri), (vi, vi + dvi).

Выведем систему дифференциальных уравнений, которым подчиняются функции

. Умножим с этой целью уравнение (2) на
и проинтегрируем полученное равенство, пользуясь выражением (3):

(6)

Заметим теперь, что в этом уравнении третье, шестое и седьмое слагаемые тождественно равны нулю. Действительно, каждое из этих слагаемых представляет собой интеграл от трехмерной дивергенции: третье слагаемое — в пространстве координат молекулы i, шестое и седьмое —в пространстве скоростей молекулы i. По теореме Гаусса они могут быть преобразованы в интеграл по граничной поверхности. Но функция Fn обращается в нуль, когда координаты любой частицы газа соответствуют точкам, лежащим на абсолютно непроницаемой стенке сосуда и, с другой стороны, функция распределения Fn стремится к нулю, когда

. Поэтому интеграл от дивергенции равен нулю и в координатном пространстве, и в пространстве скоростей. С другой стороны, пятое слагаемое в (6) можно преобразовать следующим образом. Отдельные слагаемые суммы по k отличаются лишь обозначением переменной интегрирования

.

Таким образом, получаем окончательно систему уравнений

. (7)