Смекни!
smekni.com

Исследование динамических характеристик электроприводов постоянного тока при различных способах возбуждения (стр. 5 из 6)

Наиболее простой способ управления ШИП по цепи якоря – симметричный. При симметричном способе управления в состоянии переключения находятся все четыре транзисторных ключа моста, а напряжение на выходе ШИП представляет собой знакопеременные импульсы, длительность которых регулируется входным сигналом. В ШИП с симметричным управлением среднее напряжение Uh на выходе ШИП равно нулю, когда относительная продолжительность включения у0 = 0,5. Временные диаграммы ШИП при симметричном способе управления приведены на рис. 2.9. Симметричный способ управления обычно используется в маломощных приводах постоянного тока.

Рисунок 2.9. Транзисторный ШИП


Его преимуществом является простота реализации и отсутствие зоны нечувствительности в регулировочной характеристике. Недостатком ШИП с симметричным управлением является двухполярное напряжение на нагрузке и, в связи с этим, повышенные пульсации тока в якоре исполнительного двигателя.

Стремление исключить этот недостаток привело к разработке способов, обеспечивающих однополярное напряжение на выходе ШИП. Простейшим из них является несимметричный.

Рисунок 2.10. Способы управления СТК ШИП

Несимметричное управление представлено на рис. 2.10а. В этом случае переключаются транзисторные ключи фазной группы ТКЗ и ТК4 (ключи ТК1 и ТК2 при противоположной полярности входного сигнала), транзисторный ключ ТК1 постоянно открыт и насыщен, а ключ ТК2 постоянно закрыт. Транзисторные ключи ТКЗ и ТК4 переключаются в противофазе, обеспечивая протекание тока якоря от противо-эдс двигателя. При этом на выходе ШИП формируются однополярные импульсы и среднее напряжение на выходе равно нулю, когда относительная продолжительность включения одного из нижних по схеме рис. 2.9 транзисторов Уо = 0.

Недостатком рассмотренного способа управления является то, что верхние по схеме транзисторные ключи (ТК1, ТКЗ) по току загружены больше, чем нижние. Этот недостаток устранён при поочерёдном управлении, временные диаграммы которого изображены на рис. 2.10б.

Здесь при любом знаке входного сигнала в состоянии переключения находятся все четыре транзисторных ключа моста, при этом частота переключения каждого из них в два раза меньше частоты напряжения на выходе. Управляющие напряжения транзисторных ключей одной фазы моста ТК1, ТК2 и ТКЗ, ТК4 постоянно находятся в противофазе; при этом ключи переключаются через период выходного напряжения Т. Этим достигаются одинаковые условия работы полупроводниковых приборов в мостовой схеме.

При некотором знаке входного сигнала управляющие импульсы ul, u4 длительностью t = (1+у) Т подаются на диагонально расположенные транзисторные ключи (рис. 2.10) со сдвигом на полпериода, а управляющие импульсы u2, u3 длительностью t = (l-y) T, также со сдвигом на полпериода, подаются на транзисторы противоположной диагонали (ТК2, ТКЗ). В этом случае на интервале нагрузка подключена к источнику питания с помощью диагонально расположенных ключей, а на интервале (1-у) Т нагрузка закорочена с помощью верхних или нижних транзисторных ключей. При изменении знака входного сигнала порядок управления диагональными ключами изменяется на противоположный. При поочерёдном управлении на нагрузке формируются однополярные импульсы длительностью T, пропорциональной сигналу на входе.

Обобщенная функциональная схема управления транзисторным ШИП изображена на рис. 2.11. Она содержит генератор (Г), генератор пилообразного напряжения (ГПН), схему сравнения (СС), распределитель импульсов (РИ) и усилители (У). Как правило, между усилителями сигнала управления и распределителем включены элементы гальванической развязки (оптотранзисторы). Диаграммы на рис. 2.11 поясняют принцип работы схемы управления ШИП.


Рисунок 2.11. Функциональная схема управления ШИП


3. Математическое описание, передаточные функции и структурные схемы двигателей постоянного тока

3.1 Двигатель постоянного тока с независимым возбуждением

На рис. 3.1 схематически показан двигатель постоянного тока с независимым возбуждением. Уравнения, которыми описываются электромагнитные и электромеханические процессы в этом двигателе, имеют вид:

(3.1)

Рисунок 3.1

Приведем уравнения (3.1) к безразмерному виду, приняв в качестве базовых единиц номинальные значения переменных двигателя:


(3.2)

Где

– относительные переменные состояния двигателя,

– параметры двигателя.

Уравнения (4.2) могут быть представлены в операторной форме:

(3.3)

которым соответствует модель, представленная на рис. 3.2а.

Рисунок 3.2а. Модель ДПТ с независимым возбуждением

Рисунок 3.2б. Результаты моделирования ДПТ с независимым возбуждением

Модель имеет два входа управления: (Uя) – управление по цепи якоря, (С/в) – управление по цепи возбуждения и один вход по возмущению (Мн) – возмущение по моменту нагрузки. Блок (TransferFcn) моделирует цепь возбуждения (постоянная времени цепи Тв = 0,5 с). Блок (TransferFcnl) моделирует цепь якоря (постоянная времени Т = 0,02 с). Блоки (Product, Product1) реализуют умножение в соответствии с уравнением 2 и 3 системы (3.3). Блоки (Sum1, Gain, Integrator) реализуют третье уравнение системы (3.3). На рис. 3.2 бпредставлены результаты моделирования двигателя, управляемого по цепи якоря. Управление по цепи возбуждения подается намного раньше для того, чтобы к моменту подачи управляющего и возмущающего воздействия поток в машине уже установился. Как следует из рис. 3.2б, все время моделирования принято равным 10 с, сигнал по управлению подается спустя 2 с с начала моделирования, а возмущение – спустя 5 с с начала моделирования. На рис. 3.2 бпредставлен переходной процесс по моменту и по скорости.

В двигателе с независимым возбуждением поток можно считать постоянным. В этом случае модель двигателя упрощается, такая модель представлена на рис. 3.3. В дальнейшем эта модель будет использована для синтеза электропривода при управлении по цепи якоря.

Рисунок 3.3. Модель ДПТ при постоянном токе возбуждения

В приводах постоянного тока с двигателем с независимым возбуждением иногда используется так называемое двухзонное регулирование. В этом случае двигатель управляется и по цепи якоря, и по цепи возбуждения. Обычно эти управления разнесены. По цепи якоря при постоянном потоке возбуждения управление осуществляется при значительных моментах на валу, а управление по цепи возбуждения – при малых моментах.

Моделирование работы двигателя в установившемся режиме и получение механической характеристики показано на рис. 3.4а, б при напряжении на якоре (uя = 0,8). В этой модели момент нагрузки формируется как интеграл от постоянного сигнала (блоки Step 1, Gain с к = 0,005 и Integratorl рис. 3.4а). Для визуализации механической характеристики использован блок XYGraph. Результаты моделирования показаны на рис. 3.4б. На оси абсцисс отложен момент, а на оси ординат – скорость.

Рисунок 3.4а. Модель для получения механических характеристик

Рисунок 3.4б. Результаты моделирования

3.2 Двигатель постоянного тока с параллельным возбуждением

В двигателе постоянного тока с параллельным возбуждением обмотка возбуждения включена параллельно якорю (рис. 3.5) В этом случае

, и из (3.3) имеем:

(3.4)

Рисунок 3.5

Модель двигателя, построенная по этим уравнениям показана на рис. 3.6а. Результаты моделирования, приведенные на рис. 3.6б, показывают, что переходной процесс в таком двигателе по управлению несколько затянут по сравнению с двигателем с независимым возбуждением.

Рисунок 3.6а. Модель ДПТ с параллельным возбуждением