Смекни!
smekni.com

Растровый электронный микроскоп (стр. 1 из 5)

Содержание

Введение

1 Электронно-микроскопический метод исследования

2 Физические основы растровой электронной микроскопии

2.1 Разновидности растрового электронного микроскопа

3 Схема растрового электронного микроскопа, назначение его узлов и их функционирование

4 Подготовка объектов для исследований и особые требования к ним

5 Технические возможности растрового электронного микроскопа

6 Современные виды РЭМ

Заключение

Список литературы


Введение

Быстрое развитие методов исследования и анализа, основанных на использовании электронно-зондового и различных сигналов, излучаемых веществом при взаимодействии с электронами зонда, привело к тому, что техника, которая еще совсем недавно была привилегией отдельных лабораторий, стала общедоступной.

Такое расширение работы в этом направлении было частично обусловлено достижениями в растровой электронной микроскопии и созданием различных приставок для химического рентгеновского анализа с помощью твердотелых детекторов с энергетической дисперсией. В настоящее время многие исследователи располагают мощными техническими средствами, но не имеют соответствующей подготовки для работы с ними. Поскольку эти методы исследования и анализа, применение которых значительно облегчилось благодаря техническому прогрессу и взаимопониманию, достигнутому между конструкторами, основаны на использовании физических процессов, то законы их должны быть познаны, чтобы получать полезные и важные результаты.

Если технический прогресс позволил быстро создать необходимое оборудование, то возникла естественная необходимость найти правильный подход к подробной характеристике материалов, основываясь на новых возможностях метода. Становится все более очевидным, что для характеристики материала недостаточно только химического и гранулометрического анализа. Характеристика требует качественного и количественного описания некоторого числа свойств, особенно на микроуровне (или точнее на нескольких микроуровнях), в соответствии, разумеется, с макроскопическими характеристиками, такими как химический состав и предыстория (термическая или механическая) образца независимо от природы материала (металла, керамики, минерала или полупроводника).


1 Электронно-микроскопический метод исследования

Электронно-микроскопический метод исследования получил широкое распространение в различных областях науки и техники. Электронный микроскоп благодаря высокой разрешающей способности (более чем на два порядка выше по сравнению со световым микроскопом) позволяет наблюдать тонкие особенности и детали структуры микрообъектов на атомно-молекулярном уровне. Эти приборы по своему назначению разделяются на просвечивающие (ПЭМ) и растровые (РЭМ) электронные микроскопы. Первые позволяют изучать образцы в проходящих, а вторые – во вторичных или рассеянных объектом электронах.

Применение просвечивающей электронной микроскопии (ПЭМ) в минералогии началось со времени получения теневых изображений тонкодисперсных частиц глинистых минералов. Начиная с 50-х годов стали появляться работы, посвященные принципам действия, конструкции и техническим возможностям электронных микроскопов [2]. Одновременно разрабатывались различные методы исследования в электронном микроскопе. В настоящее время в комплекс электронно-микроскопических методов входят просвечивающая и растровая электронная микроскопия, микродифракция и электронно-зондовый анализ. С помощью этого комплекса методов решается широкий круг вопросов минералогии. В него входят исследование тонкой микроморфологии минеральных индивидов и агрегатов, определение различных типов точечных дефектов и дислокаций, оценка степени неоднородности минералов, выявление морфологических и структурных соотношений между различными фазами, прямое изучение периодичности и дефектов кристаллических решеток минералов и др.

Растровый электронный микроскоп и рентгеновский микроанализатор это два прибора с большими возможностями, позволяющие на таком уровне наблюдать и изучать неоднородные органические и неорганические материалы и поверхности. В обоих приборах исследуемая область или анализируемый микрообъем облучаются тонко сфокусированным электронным пучком, либо неподвижным, либо разворачиваемым в растр по поверхности образца.


2 Физические основы растровой электронной микроскопии

Принцип действия основан на использовании некоторых эффектов, возникающих при облучении поверхности объектов тонко сфокусированным пучком электронов – зондом. Как показано на рис. 1. в результате взаимодействия электронов 1 с образцом (веществом) 2 генерируются различные сигналы. Основными из них являются поток электронов: отраженных 3, вторичных 4, Оже-электронов 5, поглощенных 6, прошедших через образец 7, а также излучений: катодолюминесцентного 8 и рентгеновского 9.

Рисунок 1. – Эффекты взаимодействия электронного луча с объектом

1 – электронный луч; 2 – объект; 3 – отраженные электроны; 4 – вторичные электроны; 5 – Оже-электроны; 6 – ток поглощенных электронов; 7 – прошедшие электроны; 8 – катодолюминесцентное излучение; 9 – рентгеновское излучение

Для получения изображения поверхности образца используются вторичные, отраженные и поглощённые электроны. Остальные излучения применяются в РЭМ как дополнительные источники информации.

Важнейшей характеристикой любого микроскопа является его разрешающая способность. Она определяется:

- площадью сечения или диаметром зонда;

- контрастом, создаваемым образцом и детекторной системой;

- областью генерации сигнала в образце.

Диаметр зонда в основном зависит от конструктивных особенностей и качества узлов микроскопа и прежде всего электронной оптики. В современных РЭМ достигнуто высокое совершенство компонентов конструкции, что позволило уменьшить диаметр зонда до 5...10 нм.

Влияние контраста на разрешающую способность проявляется в следующем. Формирование контраста в РЭМ определяется разностью детектируемых сигналов от соседних участков образца, чем она больше, тем выше контраст изображения. Контраст зависит от нескольких факторов: топографии поверхности, химического состава объекта, поверхностных локальных магнитных и электрических полей, кристаллографической ориентации элементов структуры. Важнейшими из них являются топографический, зависящий от неровностей поверхности образца, а также композиционный, зависящий от химического состава. Уровень контраста определяется также и эффективностью преобразования падающего на детектор излучения, которое создает сигнал на его выходе. Если получаемый в итоге контраст недостаточен, то его можно повысить, увеличив ток зонда. Однако большой поток электронов в силу особенностей электронной оптики не может быть хорошо сфокусирован, то есть диаметр зонда возрастет и, соответственно, снизится разрешающая способность.

Другой фактор, ограничивающий разрешение, зависит от размеров области генерации сигнала в образце. Схема генерации различных излучений при воздействии электронного пучка на образец представлена на рис. 2. При проникновении первичных электронов в образец они рассеиваются во всех направлениях, поэтому внутри образца происходит расширение пучка электронов. Участок образца, в котором первичные электроны тормозятся до энергии Е=0, имеет грушевидную форму. Боковое расширение электронного пучка в образце в этом случае имеет величину от 1 до 2 мкм, даже когда зонд имеет диаметр 10 нм. Расхождение электронов приводит к тому, что площадь выхода на поверхность образца электронов будет больше фокуса электронного пучка. В связи с этим процессы рассеивания электронов внутри образца оказывают большое влияние на разрешающую способность изображений, получаемых в отраженных, вторичных и поглощенных электронах.

Рисунок 2 – Области сигналов и пространственное разрешение при облучении поверхности объекта потоком электронов (зонд).

Области генерации: 1 – Оже-электронов, 2 – вторичных электронов, 3 – отраженных электронов, 4 – характеристического рентгеновского излучения, 5 – тормозного рентгеновского излучения, 6 – флуоресценции

Отраженные электроны. Они образуются при рассеивании первичных электронов на большие (до 90o) углы в результате однократного упругого рассеивания или в результате многократного рассеивания на малые углы. В конечном итоге первичные электроны, испытав ряд взаимодействий с атомами образца и теряя при этом энергию, изменяют траекторию своего движения и покидают поверхность образца. Размеры области генерации отраженных электронов (рис. 2) значительны и зависят от длины пробега электронов в материале образца. Протяженность области возрастает с увеличением ускоряющего первичные электроны напряжения и уменьшения среднего атомного номера Z элементов, входящих в состав образца. Протяженность области может изменяться от 0,1 до 1 мкм. Электроны, потерявшие в процессе отражения часть энергии, покидают образец на относительно больших расстояниях от места падения электронного зонда. Соответственно сечение, с которого получают сигнал (рис. 2), будет существенно больше сечения зонда. Поэтому разрешение РЭМ в режиме регистрации отраженных электронов небольшое и изменяется от десятков нанометров при работе с невысокими ускоряющими напряжениями и тяжелыми материалами до сотен нанометров при работе с большими ускоряющими напряжениями и легкими материалами.

Важной особенностью эмиссии отраженных электронов является ее зависимость от атомного номера элементов. Если атомный номер атомов материала в точке падения первичного пучка электронов мал (легкие атомы), то образуется меньшее количество отраженных электронов с малым запасом энергии. В областях образца, содержащих высокую концентрацию атомов с большим атомным номером (тяжелые атомы), большее число электронов отражается от этих атомов и на меньшей глубине в образце, поэтому потери энергии при их движении к поверхности меньше. Эти закономерности используются при получении изображений в отраженных электронах.