Смекни!
smekni.com

Автоматизация технологических процессов и объектов (стр. 8 из 10)

Рис. 6. Принципиальная схема испарителя.

Анализ процессов, протекающих в испарителе, показывает,

что он тносится к многосвязным объектам. Действительно, увеличение расхода греющего пара приводит к более интенсивному испарению, что вызывает одновременно уменьшение уровня и повыше те давления в аппарате. Аналогично изменение отбора пара G влияет не только на давление в аппарате, но и на интенсивность испарения продукта, а следовательно, и на уровень жидкости. На рис. 7. показана структурная схема испарителя, отражающая взаимосвязь между координатами. Динамические характеристики объекта по отдельным каналам аппроксимируются линейными звеньями.

Рис. 7. Структурная схема системы регулирования уровня и давления в испарителе: 1 – звено, описывающее тепловой процесс в жидкости; 2 – звено, отражающее гидродинамику в жидкой фазе; 3 – звено, отражающее гидродинамику в паровой фазе; 4 – звено, учитывающее влияние давления на теплоту испарения жидкости; 5 – регулятор давления; 6 – регулятор уровня.

Рассмотрим несколько вариантов систем регулирования испарителей и конденсаторов.

Вариант 1 (рис. 8,а) включает два замкнутых контура регулирования: регулятор 5 стабилизирует давление в аппарате, частично компенсируя возмущения по каналу

; регулятор уровня 6 обеспечивает поддержание материального баланса в аппарате по технологическому потоку.

Вариант 2 (рис. 8,6) отличается от предыдущего применением каскадной системы регулирования соотношения расходов греющего пара и жидкости

c коррекцией
по уровню жидкости. Регулятор соотношения 3 вводит статическую компенсацию возмущений по расходу жидкости, поэтому данная система регулирования предпочтительнее при сильных возмущениях, поэтому технологическому параметру.

Вариант (рис. 8,в) служит примером системы регулирования, в которой расход греющего пара рассчитывается в вычислительном устройстве 1 по контролируемым возмущениям

и корректируется регулирующим устройством 2 при отклонении уровня от заданного значения.

Рис. 8. Примеры систем автоматизации испарителей: а – на основе одноконтурных АСР; б – с использованием каскадной АСР; в – с использованием комбинированной АСР уровня; 1 – регулятор давления; 2 – регулятор уровня; 3 – регулятор соотношения расходов; 4 – вычислительное устройство.

Лекция №14. РЕГУЛИРОВАНИЕ МАССООБМЕННЫХ ПРОЦЕССОВ

В химической технологии для разделения веществ широко используют массообменные процессы: абсорбцию, экстракцию, ректификацию, адсорбцию и сушку. Несмотря на разнообразие этих процессов, и способов их аппаратурного оформления, все они подчиняются единым закономерностям и как объекты автоматизации обладают рядом общих особенностей.

Промышленные аппараты проектируют для определенных значений режимных параметров и составов исходных веществ, при которых установка обеспечивает заданное качество разделения. В реальных условиях случайные возмущения приводят к нарушению материального и теплового балансов в аппарате, изменению давления и температуры и в конечном итоге — к отклонению составов получаемых продуктов от расчетных. Поэтому одна из основных задач регулирования массообменных процессов — стабилизация режимных параметров с целью поддержания материального и теплового балансов в аппарате при различных возмущениях.

Общей особенностью массообменных процессов в промышленных условиях является их большая энергоемкость, поэтому система автоматизации должна способствовать снижению энергозатрат на разделение при условии обеспечения заданного качества продуктов.

Большинство массообменных процессов проводят в аппаратах колонного типа, диаметр которых в промышленных условиях достигает нескольких метров, а высота — нескольких десятков метров. Приведенные постоянные времени и запаздывание о таких аппаратах составляют минуты и десятки минут, а одноконтурные системы регулирования характеризуются большой динамической ошибкой и большой длительностью переходных процессов. Для повышения качества переходных процессов в системах автоматизации массообменных установок широко используют комбинированные АСР, вводящие коррекцию по наиболее сильным возмущениям, и каскадные АСР, использующие дополнительные сигналы из промежуточных точек аппаратов.

Наибольшие сложности при регулировании массообменных процессов чаще всего возникают из-за отсутствия автоматических приборов для непрерывного контроля состава получаемых продуктов. В этих случаях регулирование состава ведут по косвенным параметрам —температуре кипения смеси, ее плотности и т. п. При этом возникают дополнительные сложности, связанные с компенсацией влияния возмущающих факторов на взаимосвязь между косвенным параметром и составом.


Лекция №15. Автоматизация ректификационных установок

Ректификационные установки служат для разделения жидких однородных смесей на составляющие вещества (или группы веществ) в результате противоточного взаимодействия смеси паров и жидкой смеси. Рассмотрим особенности ректификационной установки как объекта автоматизации на примере установки для разделения бинарной смеси с концентрацией в ней легколетучего компонента

на дистиллят и кубовую жидкость с концентрациями легколетучего в них
и
. Примем следующие обозначения (рис. 1):
- расходы питания, дистиллята, кубового продукта, греющего пара в кипятильник, теплоносителя в подогреватель питания, хладагента в дефлегматор, флегмы.

Постановка задачи управления. Поскольку затраты на ректификацию являются одной из самых существенных составляющих в себестоимости продукции, задача автоматизации ректификационных установок часто ставится как задача оптимального управления, которой подчиняются задачи автоматического регулирования отдельных параметров. В зависимости от назначения ректификационной колонны используют различные критерии оптимальности.

Рис.1. Принципиальная схема ректификационной установки:

1 – ректификационная колонна; 2 – подогреватель питания; 3 – кипятильник; 4 – флегмовая ёмкость.

Статические характеристики ректификационных колонн

Для однозначного определения состояния системы требуется задание четырех независимых переменных. Чаще всего ими являются

расход
„ и состав
питания, отбор дистиллята
и паровой поток в нижней части колонны V.

При стационарном режиме в ректификационной колонне устанавливается определенный профиль концентраций по высоте колонны, причем каждому значению

или
соответствует свой профиль концентраций. Наибольшей чувствительностью по отношению к возмущениям и к регулирующим воздействиям обладают промежуточные тарелки в верхней и нижней части колонны, называемые контрольными тарелками. Коэффициенты усиления для них принимают максимальное значение по сравнению с коэффициентами усиления других тарелок в данной секции колонны. По отношению к возмущениям со стороны питания составы на контрольных тарелках являются промежуточными координатами и обладают меньшей инерционностью, чем составы продуктов. Поэтому составы на контрольных тарелках часто используют в качестве регулируемых координат вместо составов продуктов.