Смекни!
smekni.com

Модели атомных ядер (стр. 1 из 2)

«кубанскийгосударственный технологический университет»

Факультет машиностроения и автосервиса

Модели атомных ядер

Реферат по <физике>

студента 1-го курса

Хахлочева Виктора

Группа: 10-МБ-ТС1

Краснодар 2010

Модели атомных ядер Первой моделью ядра была капельная модель, развитая в работах Н. Бора, Дж. Уиллера и Я. Френкеля. В этой модели атомное ядро рассматривается как сферическая капля заряженной жидкости. Основанием для такой аналогии послужило то, что плотность ядерного вещества у всех ядер вблизи линии стабильности приблизительно одинакова, что говорит о его несжимаемости. Кроме того, с жидкостью ядерное вещество сближает и свойство насыщения ядерных сил (энергия связи ядер приблизительно пропорциональна массовому числу). В рамках капельной модели удалось объяснить многие свойства атомного ядра и получить полуэмпирическую формулу для энергии связи атомных ядер (формула Вайцзеккера), которая позволила понять некоторые закономерности в α- и β-распадах, делении ядер и грубо оценивать массы и энергии связи новых ядерEсв = a1A - a2A2/3 - a3Z2/A1/3 - a4(A/2 - Z)2/A + a5A-3/4,где a1 = 15,75 МэВ; a2 = 17,8 МэВ; a3 = 0,71 МэВ; a4 = 94,8 МэВ;

Экспериментальные исследования выявили некоторую периодичность в изменении индивидуальных характеристик основных и возбужденных состояний ядер (таких, как энергии связи, спины, магнитные моменты, четности, некоторые особенности

- и
- распада, размещение ядер-изомеров среди остальных ядер и др.). Эту периодичность капельная модель описать была не способна (см. рис.4).
Отмеченная периодичность подобна периодичности свойств электронных оболочек атома и определяется магическими числами нейтронов и протонов:
n 2, 8, 20, 28, 50, 82, 126, 184
p 2, 8, 20, 28, 50, 82, 114

Магические числа нейтронов и протонов по аналогии с атомами соответствуют полностью заполненным оболочкам. Различие в магических числах - 126 (для нейтронов) и 114 (для протонов) - обусловлено кулоновским взаимодействием.
Впервые на особую устойчивость ядер с магическим числом нейтронов или протонов обратили внимание Бартлет (1932 г.) и Эльзассер (1933 г.). Эльзассер попытался понять стабильность магических ядер, предполагая, что нуклоны, подобно электронам в атоме, движутся независимо друг от друга в одночастичной потенциальной яме. Однако он смог объяснить только три первых магических числа: 2, 8 и 20. Работа Эльзассера осталась незамеченной, так как в то время еще не было накоплено достаточно экспериментальных данных и, кроме того, его предположение казалось совершенно невероятным, поскольку в ядре, в отличие от атома, нет выделенного силового центра, а короткодействующий характер ядерных сил, казалось бы, исключал введение результирующего среднего потенциала.

Рис. 5. Одночастичные уровни в оболочечном потенциале.
Приведено схематическое изображение уровней в потенциале Вудса-Саксона: слева без учета спин-орбитального взаимодействия, справа - с учетом. Фигурные скобки объединяют уровни, входящие в одну осцилляторную оболочку. Черным цветом дано число вакантных мест для нуклонов одного сорта, в синим приведено полное число частиц, красным указаны магические числа

С течением времени, однако, накапливались все новые и новые экспериментальные доказательства существования оболочечной структуры ядер. Однако все предложенные варианты потенциальной ямы не давали правильных значений магических чисел.. Наконец, в 1949 г. М. Гепперт-Майер и Дж. Иенсен сделали решающий шаг в становлении оболочечной модели. Они поняли, что для объяснения заполнения ядерных оболочек при N, Z = 50, 82 и N = 126, необходимо учесть так называемое спин-орбитальное взаимодействие: взаимодействие спина нуклона с его орбитальным моментом количества движения. Благодаря этому им удалось воспроизвести наблюдаемые в эксперименте магические числа нуклонов. Далее они указали на важность учета принципа Паули при рассмотрении движения нуклона в ядре: принцип Паули препятствует потере энергии нуклоном при столкновении, так как все низколежащие одночастичные состояния заняты, поэтому средняя длина свободного пробега нуклона оказывается больше размеров ядра, что позволяет говорить об индивидуальных орбитах нуклонов. В модели оболочек предполагается, что нуклоны движутся независимо друг от друга в сферически-симметричной потенциальной яме. Собственные состояния нуклона в такой яме находят, решая соответствующее уравнение Шредингера. Эти состояния характеризуются квантовыми числами, которые определяют физические величины, сохраняющиеся при движении в сферически-симметричном поле (рис.5).
В оболочечной модели спин ядра складывается из суммы спинов и орбитальных моментов отдельных нуклонов. Принцип Паули и специфика ядерного взаимодействия приводят к тому, что все четно-четные ядра имеют спин равный 0. Четность состояния определяется произведением внутренних четностей составляющих его частиц на четности волновых функций, описывающих их движение относительно общего центра инерции. Внутренняя четность нуклонов принята положительной. Таким образом для четности ядерного состояния справедливо выражен

,где li - орбитальный момент i-го нуклона, A - количество нуклонов в ядре
Оболочечная модель во многих случаях хорошо воспроизводит экспериментальные значения спинов и четностей, электрических квадрупольных и магнитных моментов атомных ядер, средние времена жизни
-активных ядер, объясняет распределение ядер изомеров.
Наилучшие предсказания оболочечная модель дает для ядер вблизи заполненных оболочек, для которых самосогласованный потенциал сферически-симметричный. Однако в атомном ядре наблюдаются возбужденные состояния и другого типа - многонуклонные возбужденные состояния, в которых движение отдельных нуклонов скоррелировано. Это колебательные и вращательные возбуждения атомных ядер (рис.6 - 7).
Когерентные колебания протонов относительно нейтронов называются гигантскими резонансами. Наиболее изученный из них гигантский дипольный резонанс. Он наблюдается во всех ядрах. Феноменологическая теория колебательных состояний атомных ядер была разработана О. Бором (1952 г.).

Рис. 6. Колебания ядра: а - монопольная объемная мода, б - квадрупольная поверхностная мода, в - нейтрон-протонные поляризационные колебания

По мере удаления от заполненных оболочек минимум потенциальной энергии может соответствовать деформированному ядру. У несферического ядра изменяются одночастичные уровни, меняется частота колебаний, появляются вращательные степени свободы. Энергия вращательных состояний четно-четных деформированных аксиально-симметричных ядер описывается соотношением

,где
- момент инерции ядра, J - спин ядра, пробегающий целочисленные значения (рис.7).

Рис. 7. Вращательный спектр сильно деформированного ядра 170Hf

Модель, которая позволила бы одновременно учесть как одночастичные так и коллективные степени свободы ядра - обобщенная модель была предложена в начале 50-х годов Д. Рейнуотером, О. Бором и Б. Моттельсоном. В этой модели предполагается сильная связь внешних по отношению к заполненным оболочкам нуклонов с остовом, что может приводить к устойчивой равновесной деформации ядра. Движение остова описывается в гидродинамической модели. Одночастичные состояния рассчитываются в деформированном потенциале. Впервые такие расчеты одночастичных состояний с использованием деформированного аксиально-симметричного потенциала были выполнены в 1955 году Нильссоном (рис.8).

Рис. 8. Одночастичные уровни энергии в потенциале Нильссона

Ядерные реакции Развитие ядерной физики в большой степени определяется исследованиями в такой важной ее области, как ядерные реакции. Однако после того, как Резерфорд впервые наблюдал ядерную реакцию, до появления первой модели ядерной реакции прошло довольно много лет.

-Частицы от радиоактивных источников могли эффективно преодолеть кулоновский барьер только на самых легких ядрах. С появлением ускорителей ситуация радикально изменилась, теперь можно было бомбардировать ядра не только
-частицами. Повысились энергии и интенсивности пучков частиц.
Первая модель ядерной реакции появилась в 1935 году, это была модель Оппенгеймера - Филлипс, предложенная для интерпретации реакции (d,p) при низких энергиях.
Дальнейший прогресс представлений о механизмах ядерных реакций долгое время был связан с концепцией составного ядра (компаунд-ядра), которая была предложена в 1936 году Н. Бором для объяснения резонансной структуры сечений захвата нейтронов и протонов низких энергий атомными ядрами. Ширина этих резонансов была очень небольшой (~0.1 эВ) и они располагались близко друг к другу. Возникновение таких узких резонансов можно понять, если предположить, что из-за сильного взаимодействия между нуклонами кинетическая энергия налетающей частицы быстро перераспределяется между все большим количеством нуклонов. В результате образуется равновесная система, так называемое составное-ядро. Из-за того, что энергия в составном ядре статистически распределена между многими нуклонами вероятность того, что один из нуклонов будет иметь энергию, достаточную для вылета из ядра мала, а время жизни такого ядра велико (10-14 - 10-18 с). Эмиссия из такой системы определяется константами движения и геометрическими параметрами всего составного ядра как целого и не зависит от способа его образования (гипотеза независимости Бора), то-есть сечение реакции может быть факторизовано

,где
- сечение образования составного ядра, Гb - ширина распада составного ядра по каналу b, Г - полная ширина распада составного ядра.
Первое количественное описание реакции, идущей через компаунд-ядро, было получено Брейтом и Е. Вигнером в 1936 году.
Широкое распространение в расчетах сечений ядерных реакций получила феноменологическая модель испарения, предложенная В. Вайскопфом в 1937 году. В 30-50-х годах на основе "первых принципов" развивалась формальная теория ядерных реакций. Различные варианты формальной теории не содержали конкретных физических предположений таких, например, как гипотеза независимости, и в принципе могли описывать различные механизмы ядерных реакций. Однако применение их для практических расчетов было связано с большими трудностями. Тем не менее развитые в этих работах подходы позволили глубже понять физику процессов, происходящих в ядре и были использованы при создании моделей.
К началу 50-х годов создание последовательной теории реакций, идущих через составное ядро, было в основном завершено. С помощью теории компаунд-ядра удалось удовлетворительно описать большое количество экспериментальных данных. При вычислении сечений предполагали, что любая частица, попав в ядро, должна поглотиться (модель "черного" ядра), т.е. одночастичное движение должно полностью затухнуть. Однако начали появляться экспериментальные данные, которые свидетельствовали, что одночастичное движение не затухает полностью.

Для описания усредненного поведения сечений Г. Фешбах, К. Портер и В. Вайскопф в 1954 году предложили оптическую модель, которая получила свое название из-за аналогии рассеяния частиц на ядре с прохождением света через полупрозрачную сферу. В оптической модели предполагается, что ядро может быть описано комплексной потенциальной ямой