Смекни!
smekni.com

Методы измерения пористости горных пород (стр. 1 из 3)

Федеральное агентство по образованию

Тюменский государственный нефтегазовый университет

КАФЕДРА РАЗРАБОТКИ И ЭКСПЛУАТАЦИИ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ

Курсовая работа

по предмету

«Физика пласта»

Тема: «Методы измерения пористости горных пород»

Выполнил:

Студент гр. НР-05-2

Грицюк С.С.

Проверила:

Листак М.В.

Тюмень 2008 г.

СОДЕРЖАНИЕ:

ВВЕДЕНИЕ……………………………………………………………………………..…..стр.3

ПОРИСТОСТЬ И УДЕЛЬНАЯ ПОВЕРХНОСТЬ ГОРНЫХ ПОРОД………………………………………………………………………….…………...стр.5

ВИДЫ ПОРИСТОСТИ……….…………….……………………………………………………...стр.12

МЕТОДЫ ИЗМЕРЕНИЯ ПОРИСТОСТИ ГОРНЫХ ПОРОД…………………………………………….……………………………………….стр. 14

4.1 ОПРЕДЕЛЕНИЕ ОТКРЫТОЙ ПОРИСТОСТИ ГОРНЫХ ПОРОД…………………………................................................................................................стр.18

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ………………………………………….стр.21


Введение

Физика нефтяного и газового пласта — это наука, изучающая свойства природных коллекторов и насыщающих их углеводородных систем, воды и газов, а также процессы, связанные с их взаимодей­ствием. Она является основой для понимания процессов, происходящих в нефтяных и газовых пластах, для разработки методов повышения нефтегазоотдачи залежей, улучшения эффективности эксплуатации месторождений.

Традиционно в курсе физики нефтяного и газового пласта изучаются коллекторские, механические и тепловые свойства горных пород, закономерности фильтрации жидкостей и газов, состав и фи­зические свойства воды, нефти, газа и конденсата, фазовые состояния углеводородных систем, поверхностно-молекулярные свойства пла­стовых смесей, а также процессы, связанные с вытеснением нефти и газа из пористых сред. Развитие этой отрасли науки и полученные в последнее время результаты показали, что такой «описательный» подход оказывается недостаточным. Это стало понятным при анализе протекающих в пластах процессов с позиций синергетики —молодой науки о самоорганизации сложных систем, возраст которой всего около двух десятков лет.

Синергетический анализ показывает, что поведение систем опре­деляется не только их составом и свойствами. Под влиянием внешних воздействий могут возникать новые, порой неожиданные структуры, упорядоченные состояния.

Разработка и эксплуатация залежей нефти и газа связана фильтрацией огромных масс жидкостей и газов в коллекторах к забоям добывающих скважин. Закономерности распределения пластовых флюидов в статическом состоянии до процесса нефтеизвлечения в объемах резервуаров определяют начальные запасы их в месторождении, которые контролируются емкостными параметрами пластовой системы. Изучение фильтрационных свойств коллекторов и их изменений в процессе эксплуатации залежей позволяет оценивать продуктивность отдельных скважин и залежи в целом, как на стадии ввода месторождения в разработку, так и на стадии доизвлечения остаточных запасов углеводородов на экономически рентабильном уровне нефтегазоизвлечения.

Важное место при этом имеет физика и физикохимия процессов вытеснения нефти и газа из пористых и пористо – трещиноватых сред.

Следует отметить, что физика пласта как отрасль науки о нефтяных, газовых и газоконденсатных месторождениях имеет уже 50 – летнюю историю. Впервые курс физики нефтяного пласта был прочитан М.М. Кусаковым для студентов Московского нефтяного института в 1948 г. Базой для построения данного курса и дальнейшего развития его явились результаты исследований многих отечественных и зарубежных ученых: Л.Г.Гурвича, П.А. Ребиндера, Б.В. Дерягина, Г.А. Бабаляна и др.

2. ПОРИСТОСТЬ И УДЕЛЬНАЯ ПОВЕРХНОСТЬ ГОРНЫХ ПОРОД

Под пористостью породы понимают наличие в ней пустот. Различают общую, открытую и закрытую пористости. Общая пористость это весь объем пустот в породе, открытая — объем связных поровых каналов, по которым может фильтроваться жидкость или газ. Соответственно, закрытая пористость — это объем изолированных пустот. Очевидно, что общая пористость есть сумма открытой и закрытой.

Для количественной характеристики пористости используется ко­эффициент пористости, равный отношению объема пустот образца породы к объему всего образца

m = Vпор /Vобр

Для оценки коэффициента пористости несцементированных по­ристых сред используется модель фиктивного грунта, представляю­щая грунт в виде набора шариков одинакового диаметра. Очевид­но, что пористость зависит только от конфигурации шаров. Разли­чают два вида расположения шаров фиктивного грунта (рис 1.1): тесное и свободное. Угол

изменяется в пределах 600
.

а б

Рис. 1.1.

Слихтер показал, что пористость т связана с углом

соотношением

Из этой формулы следует, что пористость фиктивного грунта m при изменении угла

от 60 до 90° меняется от 0,259 до 0,476. В реальных условиях на пористость нефтеводогазосодержащих пород влияют несколько факторов: размер и форма зерен породы, их расположение, распределение частиц по размерам, процессы цемен­тации, растворения и отложения солей, разрушения минералов и др. Обычно пористость реальных пород не превышает 20—25% (у песков и песчаников). У глин она может достигать 50% и более, у извест­няков — еще большее значение.

Наряду с пористостью используется еще одна характеристика пористой среды — просветность. Если взять поперечное сечение керна, то под просветностью понимается отношение площади пустот к общей площади поперечного сечения керна, т. е.

Нетрудно показать взаимосвязь пористости и пористости, ум­ножив числитель и знаменатель правой части предыдущей формулы на длину керна L:

Особо важное значение имеет зависимость пористости от дав­ления. Установлено, что с повышением пластового давления по­ристость возрастает. Причем, если пористая среда обладает плас­тическими свойствами, то изменения пористости могут иметь не­обратимый, гистерезисный характер.

Пористость — это основной параметр при подсчете запасов нефти или природного газа в залежи.

Наиболее простым способом определения открытой пористости образца породы является объемный метод. Образец породы насыщают газом, который йе сорбируется породой, например азотом или воздухом. В образце породы создается некоторое давление />t. Послеустановления в системе равновесия производят выпуск газа из по­роды, при этом давление снижается до атмосферного р0. Затем с помощью газового счетчика замеряют объем газа V, вышедшего из образца.

Запишем уравнение материального баланса для начального и ко­нечного состояний:

(1.1)

где Vnop — поровый объем образца; z1, z0 —- коэффициент сжимаемости, соответственно, при давлении р 1и р0; р 0 — плотность газа при стандартных условиях; V1 , V0 — объем газа в образце, соответственно, при давлении p1 и р0.

Учитывая, что Vпор — тVобр , где Vобр — геометрический объем образца, v=v1-v2, и вычитая из первого уравнения системы (1.1) второе, получаем

откуда и определяем пористость т.

Внутреннюю структуру пористого пространства изучают на основе результатов исследований сечений кернов, отбираемых в скважине из данного пласта. Восстановление внутреннего строения породы по ее. поверхностным свойствам является единственно возможным, по­скольку материал породы коллектора непрозрачен. Такое восстанов­ление основано на методах одной из отраслей прикладной математи­ки—стереологии — науки, рассматривающей исследования трехмерной структуры тел, когда известны только их сечения или проекции на плоскость.

. Применение стереологических методов позволяет оценивать такие параметры, как удельная поверхность, извилистость и т. д. Для уяснения основных положений стереологических. методов обратимся к рис. 1.2, на котором изображены плоское сечение образца породы (в увеличенном масштабе) и секущая прямая определенной длины (отрезок). Оказывается, что, если подсчитать среднее число пересечений этой прямой с линиями границ зерен при многократном случайном бросании указанного отрезка на выделенную плоскость, то можно определить суммарную протяженность линий границ зерен на единице площади шлифа, удельную поверхность породы и ряд других характеристик пористой среды.