Смекни!
smekni.com

Формирование и развитие основных понятий геометрической оптики в курсе физики средней школы (стр. 4 из 8)

При обсуждении законов геометрической оптики с учащимися, учитель применяет принцип Ферма, который заключается в утверждении, что действительный путь распространения света из одной точки в другую есть тот путь, для прохождения которого свету требуется минимальное (или максимальное) время по сравнению с любым другим геометрическим возможным путем между теми же точками. Отсюда сразу же следует справедливость закона прямолинейного распространения света, но при условии изотропности и однородности окружающей среды [5].

Другими словами, скорость света должна быть одинаковой во всех точках и во всех направлениях. При нарушении этого условия свет перестает распространяться по прямой.

Закон отражения света: угол отражения равен углу падения (рис. 1.3.3)

Рис. 1.3.3

Пусть свет от источника попадает к наблюдателю Q отразившись от границы раздела сред АВ. Геометрически легко доказать, что из всех возможных траекторий светового луча 1, 2 и 3 самой короткой будет та, где углы, образуемые падающим (SO) и отраженным (OQ) лучами с перпендикуляром ON, восстановленным к границе раздела в точке падения равны, причем, оба луча и нормаль лежат в одной плоскости.

Закон преломления света.

Пусть свет от источника S попадает в точку Q, проходя через границу раздела сред АВ (рис. 1.3.4)


Рис. 1.3.4

V1– скорость света в среде I; V2– в среде II, х – расстояние от проекции источника на плоскость раздела до точки падения луча. Тогда длина пути света:

в среде I:

в среде II:

Общее время прохождения луча от источника S до точки Q:

Приравнивая первую производную по х к нулю (

), находим минимум и получаем:

Поскольку a>b (экспериментальный факт), V1>V2, т. е. скорость света в оптически более плотной среде меньше [5].

Очевидно, что использование принципа Ферма позволяет дать общий подход к законам геометрической оптики и обеспечивает лучшее усвоение материала учащихся.

В рамках программы по физике для средней школы на изучение раздела "Световые явления" отводится 10 часов. Этот раздел включает темы:

1. Источники света. Прямолинейное распространение света. Объяснение солнечного и лунного затмений.

2. Отражение света. Законы отражения. Плоское зеркало.

3. Преломление света. Линза. Фокусное расстояние линзы. Построение изображений, даваемых линзой. Оптическая сила линзы. Фотоаппарат. Глаз. Очки.

Таким образом, программа по физике для средней школы содержит достаточный объем знаний по оптике, но в значительном усовершенствовании нуждается методика ее изложения.

В данной работе представлены некоторые методические разработки уроков по геометрической оптике в рамках школьной программы.

Глава 2. Методические разработки уроков в геометрической оптике в курсе физики средней школы.

§2.1 Урок на тему "Законы геометрической оптики" в 11 классе с разноуровневым обучением учащихся.

Дифференциация обучения является необычайно сложной задачей потому, что учащиеся различаются знаниями, умственным развитием, работоспособностью, памятью, наклонностями и т. д. При ориентации на среднего ученика замедляется темп работы ученика с высоким умственным развитием, быстрой реакцией, направленным вниманием. При этом слабые учащиеся не могут воспринимать материал, не рассчитанный на их способности и подготовку.

Тем не менее, проблема дифференцированного подхода к учащимся разрешима. Для старших классов она частично решается введением факультативов, специализированных школ и классов (с тем или иным уклоном), так же необходимо разрабатывать уроки с использованием дифференцированного обучения [6].

Предлагаю рассмотреть один из уроков по оптике в 11 классе, на котором используется дифференцированное разноуровневое обучение [7].

На предыдущем занятии (а это был урок-лекция на тему "Волновые и квантовые свойства света") учащимся было предложено подготовиться к уроку на тему "Геометрическая оптика". К сожалению этот материал забыт в 11 классе, так как перенесен для изучения в 8. Домашнее задание состоит из двух частей и заранее разделено по степени сложности на три уровня:

Часть первая – повторение материала.

Уровень I (наиболее простой) – повторить формулировки понятий и законов из учебника "Физика-8":

1) линзы, их виды, основные линии и точки;

2) характеристика линз – оптическая сила;

3) формула тонкой линзы;

4) закон отражения и преломления.

Уровень II (средней сложности) – повторить выводы:

1) формула тонкой линзы;

2) выражение для расчета увеличения, даваемого линзой;

3) закон отражения света;

4) закон преломления света.

Уровень III (наиболее сложный) – повторение, включающее I и II уровни.

Часть вторая – творческое задание.

Уровень I и II: работа с дополнительной литературой по подбору интересного фактического материала о применении геометрической оптики (Вавилов С. И. "Глаз и солнце", Перельман Я. И. "Занимательная физика", Солнцев В. А. "Оптические наблюдательные приборы", Билимович Б. Ф. "Световые явления вокруг нас") [8, 9, 10].

Уровень III: индивидуальная работа, тему которой учащиеся выбирают самостоятельно и сообщают ее учителю. Примерные темы:

1) Очки, история их создания, зачем нужны очки, чем они отличаются друг от друга (с демонстрацией хода лучей).

2) Лупа: история создания, применение.

3) Микроскоп: история создания, открытия, сделанные с помощью микроскопа.

4) Телескоп: история создания, открытия, сделанные с помощью телескопа, современное применение.

Цели урока, реализующего разноуровневое обучение учащихся – повторение материала 8 класса, углубление и расширение знаний по теме; более широкий чем прежде показ практического применения геометрической оптики. Урок состоит из пяти этапов [7].

Этап I – разминка.

1. Задание уровня I для всех: воспроизвести определения и формулировки. Это устные ответы на вопросы учителя. Вопросы: что такое линза? Что называется фокусом линзы? Как записывается формула тонкой линзы? Что такое оптическая сила?

2. Задание уровня II и III выполняется по желанию: вывести формулы а) тонкой линзы; б) закона отражения и преломления. Это индивидуальный письменный опрос.

3. Задание уровня I-II: построение оптических изображений. Форма "быстрый опрос", – учащиеся по очереди выходят к доске и выполняют чертежи хода лучей в линзах. В результате анализа выполненных построений нужно сформулировать выводы. В ходе работы учащиеся прослушивают основные определения, на доске остаются формулы и выводы, построения изображений в линзах, т. е. они вспоминают главное из геометрической оптики.

Этап II – углубление в тему. Выполнение заданий с выбором ответа. Текст проецируется через кодоскоп.

а) Задание наиболее простой степени сложности – выберете ответ и его обоснование. Там, где обоснования нет, выбор ответа подтвердите своими логическими рассуждениями.

1. Угол между падающим лучом и плоскостью зеркала равен 30°. Чему равен угол отражения?



Рис. 2.1.1

Ответы: а) 30°, б) 60°, в) 15°, г) 90°.

Обоснование: а) так как Ða=Ðb, б) так как b=90°-30°=60°.

2. Попадет ли световой луч в точку, где построением получено действительное изображение? Мнимое изображение?

Ответы: а) "Нет" – для обоих случаев; б) "Да" – для обоих случаев; в) "Да" – только для точки получения мнимого изображения; г) "Да" – только для точки получения действительного изображения.

3. Происходит ли смещение луча, падающего из воздуха под углом 30° на стеклянную плоскопараллельную пластинку? От чего оно зависит?

Ответы: а) "Да", зависит от толщины пластинки; б) "Да", зависит от цвета луча; в) "да", зависит от материала пластинки и цвета луча; г) смещение луча не происходит.

б) Задания средней степени сложности: даются индивидуально на карточках. Примеры карточек:

1. Укажите рисунок с верным ходом светового луча в прямоугольной трехгранной призме, если ее преломляющий угол j равен 30°, а n=1,5.

Ответы:


Рис. 2.1.2.

2. На каком из рисунков правильно показан ход светового луча, падающего на прямоугольную равнобедренную призму, для которой n=1,5?

Ответы:


Рис. 2.1.3.