Смекни!
smekni.com

Изучение колебаний цилиндрических конструкций систем управления летательных аппаратов (стр. 1 из 3)

Введение

Целью курсовой работы является изучение колебательных процессов на примере колебаний струны на разработанной установке. На установке можно изучать поперечные колебания струны, измерение собственных частот колебаний струны с закрепленными концами, снятие резонансной кривой на частоте основного тона, определение скорости распространения поперечных колебаний, определения затухания струны и устойчивости колебания.

Разработка и создание установки.

Для управления самолетом устанавливаются специальные тяги. Тяга представляет собой тонкостенную оболочку, пустотелую, с двумя хвостовиками на концах. Так как на самолете постоянно присутствуют вибрации, то тяги такие участвуют в колебательном процессе. При этом форма тяги изменяется, становясь дугообразной. При этом она уменьшается в длине. «Вздутие» может вызвать заклинивание тяги в местах прохождения ее через технологические отверстия. Для предотвращения этого опасного явления применяются опоры с тремя роликами через 120° (люнеты) или внутри тяги закладывается неметаллический груз, который изменяет частоту собственных колебаний тяги, хотя и уменьшает их амплитуду.

1. Цилиндрические конструкции управления ЛА в потоке воздуха

Для обеспечения высокой надежности и безопасности полетов к системам управления летательных аппаратов предъявляют ряд специфических требований:

- отсутствие автоколебаний и резонанс­ных явлений при возникновении внешних возмущающих воздейст­вий;

- отсутствие заеданий и заклинивания управления при появле­нии упругих деформаций конструктивных элементов планера;

- мини­мальные зазоры в подвижных сочленениях, обеспечивающие вели­чины люфтов в соответствии с техническими условиями;

- высокая живучесть при длительной эксплуатации и частичных повреждениях системы и др.

На рулевые поверхности, узлы и агрегаты системы управления в полете действуют аэродинамические и маневренные нагрузки, а в случае отказа одного из двигателей — и дополнительные. В зна­чительной мере величина нагрузок и перегрузки, действующих, например, на оперение летательного аппарата и его рулевые по­верхности, зависят от способа пилотирования, квалификации пи­лотов.

Эксплуатационные факторы оказывают существенное влияние на техническое состояние элементов систем управления в процессе эксплуатации летательных аппаратов. Так, величина натяжения тросового управления в основном зависит от температуры наруж­ного воздуха, так как остальные параметры (площадь троса, мо­дуль упругости, коэффициент линейного расширения) в эксплуата­ции практически не изменяются.

Вследствие большой разницы коэффициентов линейного расши­рения стальных тросов и дюралюминиевой конструкции планера ошибки в регулировке натяжения тросов на земле могут оказать существенное влияние на работоспособность системы управления в полете, так как значительное ослабление тросовой проводки вы­зывает соскакивание тросов с роликов, повышенное трение в про водке и быстрый износ или отказ системы управления из-за полного заклинивания.

Техническое обслуживание тросовой проводки управления пре­дусматривает прежде всего периодическую проверку состояния тросов и их наконечников, кронштейнов крепления направляющих, роликов и других деталей, а также натяжение тросов.

Наиболее распространенными неисправностями тросового уп­равления являются: потертость тросов, обрыв отдельных нитей или прядей, нагартовка в местах перегибов на роликах, выпучивание нитей или прядей тросов, коррозия при наличии обрыва нитей, за-ершенности, вспучивания отдельных нитей или прядей трос заме­няют. После замены троса обязательно проверяют правильность и величину отклонения рулевой поверхности и натяжения троса. Если фактическое натяжение данного диаметра троса, замеренное тензо­метром при определенной температуре наружного воздуха, не от­личается от натяжения троса (такого же диаметра при той же тем­пературе) в соответствии с графиком (рис. 1), то перерегулировку натяжения тросов не произво­дят.

После замены тросов прове­ряют правильность(прокладки тросов по роликам, состояние ро­ликов, их подшипников и крон­штейнов крепления. Проверяют также зазоры между тросами и элементами конструкции лета­тельного аппарата. В большинст­ве случаев зазор между тросами и подвижными деталями должен быть не менее 20 мм, а между тросами и неподвижными деталя­ми — не менее 10 мм.

В жесткой проводке весьма важно предотвратить возникновение автоколебаний. Совпадение частот собственных колебаний тяг с вынужденными (от других источников) может привести к разру­шению тяг в эксплуатации в результате усталостных явлений. Ре­зонансные колебания тяг являются опасными еще и потому, что они могут происходить без заметных ощущений на рычагах управления. Это затрудняет своевременное выявление и устранение истинной причины колебаний.

Собственная частота первого тона колебания тяги (Гц) с шарнирным соединением может быть определена по формуле:

(1)

где l-длина тяги, м; EI-жесткость тяги при изгибе, Н∙м2; m-масса тяги Н∙с2/м.

Из формулы видно, что частота колебаний тяг может иметь от­клонения от расчетной величины по причине изменения ее длины, жесткости или типа материала. Большой износ тяг, роликов и направляющих или нарушение их регулировки могут привести к тому, что тяга (при больших зазорах) не будет касаться отдельных на­правляющих, а это изменит расстояние между опорами (как бы длину тяги) и соответственно частоту, амплитуду колебания тяги и как следствие может привести к разрушению тяги. Весьма малые зазоры (ниже допустимых) между роликовыми направляющими и тягой при появлении упругих деформаций конструктивных элемен­тов планера могут вызвать заклинивание системы управления.

Наличие люфтов в соединениях жесткой проводки может при­вести не только к запаздыванию отклонения рулей, но и к их виб­рации, а также к вибрации других конструктивных элементов си­стемы управления. При длительном воздействии вибрационных на­грузок может произойти разрушение узлов крепления триммера, руля, кронштейна, тяги и других элементов, что приведет к отказу системы управления.

Надежность работы системы управления, а следовательно, и безопасность полетов определяется правильностью регулировок отдельных систем, агрегатов и узлов управления летательным ап­паратом. При этом проверяют величины зазоров между роликами направляющих и трубами тяг. Зазоры обычно должны быть в пре­делах 0,15—0,5 мм. При наличии зазора более 0,5 мм заменяют один из роликов на ролик увеличенного диаметра. После проверки требуется также заменять ролики, имеющие повреждения. Кроме того, по перемещению соответствующего руля при зажатых рыча­гах управления проверяют величину суммарного люфта в той или иной системе управления. Максимально допустимые люфты в про­водке системы управления, замеренные по задней кромке руля, на­ходятся в пределах 2—8 мм. При наличии люфтов в тягах меняют втулки, болты или другие детали шарнирных соединений тяг.

С целью оценки исправности системы управления производят проверку усилий трения. При чрезмерном натяжении тросов будет обнаружено увеличение усилия трения по динамометру. Для современных летательных аппаратов допустимое усилие трения в проводках управления рулями составляет 50—120 Н, а триммерами рулей—20—З0Н.

В процессе выполнения определенного вида регламентных ра­бот, а также после замены тяг, тросов, барабанов и других деталей системы управления производят частичную или полную проверку регулировки той или иной системы. Нарушение регулировки систе­мы управления может привести к ее отказу в полете, так как от­клонение рулей при этом не будет соответствовать отклонению рычагов в кабине. Особенно опасны ошибки в регулировке уп­равления триммерами, которые часто применяют на взлете или посадке.

1.1 Механизм возникновения колебаний

Колебания нитей под действием равномерного потока воздуха известны давно. Есть основания считать первой подлинно научной работой по изучению эоловых тонов статью В. Струхаля (Strouhal), появившуюся в 1878 году.

Он изучал эоловы тона, возникающие при движении в воздухе длинного отрезка проволоки круглого сечения, и установил, что безразмерная величина

Sh = f d/v; (2)

в некотором диапазоне скоростей остается постоянной и равной приблизительно 0.185. Здесь f – частота эоловых тонов; d – диаметр проволоки; v – линейная скорость обтекающего потока. Впоследствии величина St была названа в честь исследователя числом Струхаля и, наряду с числом Рейнольдса и рядом других фундаментальных безразмерных величин, вошла в число важнейших критериев подобия в гидроаэромеханике. Некоторые качественные объяснения результатов экспериментов Струхаля дал Рэлей. Позже Т. Карман установил, что отношение расстояния между рядами вихрей, срывающихся за цилиндром в потоке, к расстоянию между вихрями в ряду равно примерно 0.28, т. е. довольно близко числу, установленному Струхалем.

Цилиндрические конструкции подверженные ветровым нагрузкам колеблются в поперечном направлении (перпендикулярно направлению ветра) из-за образования вихрей на боковых к ветру сторонах. Результатом является образование вихревой дорожки называемой дорожкой Кармана. В определенном диапазоне скоростей ветра и диаметров поперечного сечения цилиндрических конструкций образование и сход вихрей происходят с постоянным периодом по времени, следовательно на конструкцию действует периодическая возбуждающая колебания сила. Когда частота схода вихрей приближается к одной из собственных частот конструкции, возникают резонансные колебания. Из за изменения скорости полета и возникновения порывов ветра появляются колебания по направлению ветра но основной интерес представляют именно поперечные к ветру колебания.