регистрация /  вход

Применение звуковых волн (стр. 1 из 6)

Содержание:

1. Введение………………………………………………….

2. Звуковые волны…………………………………………..

2.1. Акустика……………………………….. …..

2.2. Звукообработка …………………………….

2.3. Радиолокации……………………………….

4. Заключение……………………………………………….

5. Библиография…………………….

Мир, окружающий нас, можно назвать миром звуков. Звучат вокруг нас голоса людей и музыка, шум ветра и щебет птиц, рокот моторов и шелест листвы. С помощью речи люди общаются, с помощью слуха получают информацию об окружающем мире. Не меньшее значение звук имеет для животных. С точки зрения физики, звук - это механические колебания, которые распро­страняются в упругой среде: воздухе, воде, твёрдом теле и т.п.Способность человека воспринимать упругие колебания, слу­шать их отразились в названии учения о звуке - акустика (от греческого akustikos - слуховой, слышимый). Вообще человече­ское ухо слышит звук только тогда, когда на слуховой аппарат уха действуют механические колебания с частотой не ниже 16 Гц но не выше 20 000 Гц. Колебания же с более низкими или с более высокими частотами для человеческого уха неслышимы.

Вопросы, которыми занимается акустика, очень разнооб­разны. Некоторые из них связаны со свойствами и особенностями нашего слуха.

Предметом физиологической акустики и является сам орган слуха, его устройство и действие.Архитектурная акустика изучает распространение звука в помещениях, влияние на звук размеров и формы помещений, свойств материалов, покрывающих стены и потолки, и т.д. При этом опять имеется в виду слуховое восприятие звука.Музыкальная акустика исследует музыкальные инструменты и условия их наилучшего звучания.Физическая акустика занимается изучением самих звуковых колебаний, а за последнее время охватила и колебания, лежащие за пределами слышимости (ультраакустика). Она широко исполь­зует разнообразные методы для превращения механических коле­баний в электрические и обратно (электроакустика). Применительно к звуковым колебаниям в число задач физиче­ской акустики входит и выяснение физических явлений, обуслов­ливающих те или иные качества звука, различаемые на слух.

2. Звуковые волны

Понятие «звук» самым тесным образом связано с понятием «волна». Что же переносится в пространстве при распространении волны? Оказывается, в пространстве переносится некоторое возмущение. Брошенный в воду камень вызывает всплеск поверхности воды, и это возмущение передается от одной точки водоема к другой в виде колебаний. Таким образом, волна – это процесс перемещения в пространстве изменения состояния.

Звуковая волна (звуковые колебания) – это передающиеся в пространстве механические колебания молекул вещества (например, воздуха). В результате каких-либо возмущений (например, колебаний диффузора громкоговорителя или гитарной струны), возникает перепад давления в этом месте, так как воздух в процессе движения сжимается, в результате чего возникает избыточное давление, толкающее окружающие слои воздуха. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха. Так по цепочке происходит передача первоначального возмущения в пространстве из одной точки в другую. Тело, создающее возмущение (колебания) воздуха, называют источником звука.

Звуковые колебания, а также вообще все колебания, как известно из физики, характеризуются амплитудой (интенсивностью), частотой и фазой. Скорость распространения колебаний зависит от среды, в которой колебания распространяются. На эту скорость влияют такие факторы, как упругость среды, ее плотность и температура. Так, например, чем выше температура среды, тем выше в ней скорость звука. В нормальных (при нормальной температуре и давлении) условиях скорость звука в воздухе составляет приблизительно 330 м/с. Таким образом, время, через которое слушатель начинает воспринимать звуковые колебания, зависит от удаленности слушателя от источника звука.

Звуковым волнам присущи различные явления, связанные с распространением волн в пространстве. Перечислим наиболее важные из них.

Интерференция – усиление колебаний звука в одних точках пространства и ослабление колебаний в других точках в результате наложения двух или нескольких звуковых волн. В результате наложения двух волн, звук то усиливается, то ослабевает, что воспринимается на слух как биения. Этот эффект называется интерференцией во времени. Эффект возникновения биений используется при настройке двух музыкальных тонов в унисон (например, при настройке гитары): настройку производят до тех пор, пока биения перестают ощущаться.

Звуковые волны, при их падении на границу раздела с другой средой, могут отразиться от границы раздела, пройти в другую среду, изменить направление движения – преломиться от границы раздела (это явление называют рефракцией), поглотиться или одновременно совершить несколько из перечисленных действий. Степень поглощения и отражения зависит от свойств сред на границе раздела.

Энергия звуковой волны в процессе ее распространения поглощается средой. Этот эффект называют поглощением звуковых волн. Важно отметить, что степень поглощения звуковой энергии зависит как от свойств среды (температура, давление, плотность), так и от частоты звуковых колебаний: чем выше частота звуковых колебаний, тем большее рассеяние претерпевает на своем пути звуковая волна.

Следует упомянуть также явление волнового движения в замкнутом объеме, суть которого состоит в отражении звуковых волн от стенок некоторого закрытого пространства. Отражения звуковых колебаний могут сильно влиять на конечное восприятие звука – изменять его окраску, насыщенность, глубину. Так, звук идущий от источника, расположенного в закрытом помещении, многократно ударяясь и отражаясь от стен помещения, воспринимается слушателем как реверберация (от лат. «reverbero» – «отбрасываю»). Эффект реверберации широко используется в звукообработке с целью придания звучанию специфических свойств.

Способность огибать препятствия – свойство звуковых волн, называемое в науке дифракцией. Степень огибания зависит от соотношения между длиной звуковой волны (ее частотой) и размером стоящего на ее пути препятствия или отверстия. Если размер препятствия оказывается намного больше длины волны, то звуковая волна отражается от него. Если же размеры препятствия оказываются сопоставимыми с длиной волны или оказываются меньше ее, то звуковая волна дифрагирует .

Еще один эффект, связанный с волновым движением – эффект резонанса. Звуковая волна, распространяясь в пространстве, может переносить энергию колебаний другому телу (резонатору), которое, поглощая эту энергию, начинает колебаться, и само становится источником звука. Так исходная звуковая волна усиливается, и звук становится громче. В случае появления резонанса, энергия звуковой волны расходуется на «раскачивание» резонатора и сказывается на длительности звучания .

Можно упомянуть и эффект Допплера – заключается в том, что длина волны изменяется соответственно изменению скорости движения слушателя относительно источника волны. Чем быстрее слушатель приближается к источнику волны, тем регистрируемая им длина волны становится меньше и наоборот.

Все эти явления учитываются и широко используются акустике, звукообработке и радиолокации.

Акустика

Акустика (от греч. akustikós — слуховой, слушающийся), в узком смысле слова — учение о звуке, т. е. об упругих колебаниях и волнах в газах, жидкостях и твёрдых телах, слышимых человеческим ухом (частоты таких колебаний находятся в диапазоне 16 гц—20 кгц); в широком смысле — область физики, исследующая упругие колебания и волны от самых низких частот (условно от 0 гц) до предельно высоких частот 1012 —1013 гц, их взаимодействия с веществом и применения этих колебаний (волн).

Исторический очерк. А. — одна из самых древних областей знания, зародившаяся из потребности дать объяснение явлениям слуха и речи и в особенности музыкальным звукам и инструментам. Ещё древнегреческий математик и философ Пифагор (6 в. до н. э.) обнаружил связь между высотой тона и длиной струны или трубы; Аристотель (4 в. до н. э.) понимал, что звучащее тело вызывает сжатия и разрежения воздуха, и объяснял эхо отражением звука от препятствий.

Период средневековья мало что дал развитию А.; её прогресс становится заметным, начиная с эпохи Возрождения. Итальянский учёный Леонардо да Винчи (15—16 вв.) исследовал отражение звука, сформулировал принцип независимости распространения звуковых волн от разных источников.

Историю развития А., как физической науки, можно разбить на 3 периода. Первый период — от начала 17 в. до начала 18 в. — характеризуется исследованиями системы музыкальных тонов, их источников (струны, трубы), скорости распространения звука. Г. Галилей обнаружил, что звучащее тело испытывает колебания и что высота звука зависит от частоты этих колебаний, а интенсивность звука — от их амплитуды. Французский учёный М. Мерсенн, следуя Галилею, уже мог определить число колебаний звучащей струны; он впервые измерил скорость звука в воздухе. Р. Гук (Англия) устанавливает на опыте пропорциональность между деформацией тела и связанным с ней напряжением — основной закон теории упругости и А., а Х. Гюйгенс (Голландия) — важный принцип волнового движения, названный его именем (см. Волны).

Второй период охватывает два века — от создания основ механики И. Ньютоном (конец 17 в.) и до начала 20 в. В этот период А. развивается как раздел механики. Создаётся общая теория механических колебаний, излучения и распространения звуковых (упругих) волн в среде, разрабатываются методы измерения характеристик звука (звукового давления в среде, импульса, энергии и потока энергии звуковых волн, скорости распространения звука). Диапазон звуковых волн расширяется и охватывает как область инфразвука (до 16 гц), так и ультразвука (свыше 20 кгц). Выясняется физическая сущность тембра звука (его "окраски").

Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!