Смекни!
smekni.com

Оксисоединения (стр. 4 из 11)

Реакция начинается с атаки ионом водорода того углеродного атома, который связан с бóльшим числом водородных атомов и является поэтому более электроотрицательным, чем соседний углерод (правило Марковникова). После этого к соседнему углероду присоединяется вода с выбросом Н+.

Важный способ получения этилового спирта, известный с древнейших времён, заключается в ферментативном гидролизе некоторых углеводов, содержащихся в различных природных источниках (фрукты, картофель, кукуруза, пшеница и др.), например:

С6Н12О62Н5ОН + 2СО2

глюкоза

Химические свойства спиртов

Ряд химических свойств спиртов является общим для всех спиртов; имеются также и реакции, по-разному протекающие для первичных, вторичных и третичных спиртов.

1. Реакци с разрывом O-H связи

Образование алкоголятов металлов. Алифатические спирты - слабые кислоты. Кислотность спиртов в зависимости от строения убывает в ряду: первичные > вторичные > третичные. При действии на спирты щелочных металлов, в частности натрия, происходит, хотя и менее бурно, взаимодействие, подобное реакции натрия с водой:

2ROH + 2Na 2RONa + H2

Такого типа металлические производные спиртов носят общее название алкоголяты (отдельные представители: метилат натрия СН3ОNa, этилат натрия С2Н5ОNa). Их называют также алкоксидами (метоксид натрия, этоксид и т.д.). С увеличением молекулярной массы спирта реакционная способность их при взаимодействии с натрием уменьшается.

Известны алкоголяты и других металлов, кроме щелочных, но они образуются косвенными путями. Так, щелочноземельные металлы непосредственно со спиртами не реагируют. Но алкоголяты щелочноземельных металлов, а также Mg, Zn, Cd, Al и других металлов, образующих реакционноспособные металлорганические соединения, можно получить действием спирта на такие металлорганические соединения. Например:

2CH3OH + Zn (CH3)2 (CH3O)2Zn + 2CH4

Алкоголяты спиртов широко применяют в органическом синтезе. Так как вода - более сильная кислота, чем спирты, то в присутствии воды алкоголяты разлагаются с выделением исходных спиртов:

CH3ONa +H2O CH3OH + NaOH

Метилат натрия метанол

Поэтому алкоголяты невозможно получить при действии гидроксидов металлов на спирты:

ROH + NaOH RONa + H2O

С другой стороны, спирты проявляют слабоосновные свойства, образуя с сильными кислотами более или менее устойчивые соли:

H Br-

½

ROH + HBr R¾O+¾H

Оксониевые соли

Образование сложных эфиров спиртов (реакция этерификации). При действии кислородных минеральных и органических кислот на спирты происходит реакция, которую можно представить следующими примерами:

HO RO

½½

ROH + SO2 SO2 + H2O

½½

HO HO

HO RO

½½

2ROH + SO2 SO2 + 2H2O

½½

HO RO

O O ** OH H¾O+¾H

║ H+ ║ R’OH ½½-H2O

R¾C¾OH R¾C+¾OH ** R¾C¾OH R¾C¾OH R¾C+¾OH

Карбоновая½½½

К-та R’-O+¾H R’-O R’-O

O

R¾C¾OR’

Сложные эфиры

Такого рода взаимодействие спирта с кислотами называется реакцией этерификации, а полученные вещества – сложными эфирами данного спирта и данной кислоты. Реакция этерификации спиртов сильными минеральными кислотами (такими как H2SO4) протекает быстро и не требует использования катализаторов. С карбоновыми кислотами скорость реакции этерификации значительно увеличивается в присутствии катализаторов. В качестве последних обычно используют минеральные кислоты в небольших количествах.

Внешне уравнение этой реакции подобно уравнению нейтрализации щёлочи кислотой:

NaOH + HNO3 = NaNO3 + H2O

Однако глубоким различием этих реакций является то, что нейтрализация – ионная, неизмеримо быстро протекающая реакция, которая сводится, в сущности, к взаимодействию ионов:

Н+ + ОН- → Н2О

Реакция этерификации идёт иным путём. Спирт в большинстве случаев реагирует, отдавая не гидроксил (как щёлочь при нейтрализации), а водород гидроксильной группы; кислоты (органические и некоторые, но не все, минеральные) отдают свой гидроксил. Этот механизм был установлен при помощи спирта, меченного изотопом кислорода 18О. Как оказалось, при взаимодействии такого спирта с кислотами RCOOH выделяется обычная вода, а не Н218О.

Образование сложных эфиров при действии на спирты хлорангидридов неорганических и органических кислот. Взаимодействие хлорангидридов с первичными спиртами:

ROH + ClN=O → RO─N=O + HCl

3ROH + PCl3 → (RO)3P + 3HCl

O O

║ ║

ROH + Cl─C─CH3 → RO─C─CH3 + HCl

O O

║ ║

ROH + Cl─C─Cl→ RO─C─CCl + HCl

2. Реакции с разрывом С¾O связи.

Образование галогенидов.

При действии неорганических галогенангидридов на третичные и вторичные спирты происходит в основном обмен гидроксила на галоген:

3(CH3)3COH + PBr3 → 3(CH3)3CBr + P(OH)3

Обмен гидроксила на галоген происходит и при действии PBr3 и PI3 на первичные спирты:

3C2H5OH + PBr3 → 3C2H5Br + P(OH)3

При действии галогенводородных кислот на спирты также образуются алкилгалогениды.

Реакция может протекать либо по механизму SN2, либо по SN1. Например:


Br-

RCH2OH + H+ → R¾CH2¾O+¾O → RCH2Br + H2O SN2

½

H для первичных спиртов

R R -H2O R Br- R

R’¾C¾OH + H+ → R’¾C¾O+¾H R’¾C+ → R’¾C¾Br SN1

R” R” ½ R” R”

H для вторичных и третичных спитртов

Для успешной замены гидроксильной группы на хлор используют реактив Лукаса (соляная кислота + ZnCl2 ). Реакционная способность спиртов в этих реакциях изменяется в ряду: третичные>вторичные>первичные.

3. Реакции с участием группы OH и атома водорода, стоящего у соседнего атома углерода.