Смекни!
smekni.com

Изучение кластеров и их свойств в области химии (стр. 1 из 5)

Министерство образования и науки Украины

Реферат по теме:

«Изучение кластеров и их свойств в области химии»

Донецк 2008


Введение

Эта работа посвящена непостоянным группам частиц в химии. Важное значение таких групп уже давно осознавалось в отдельных областях химии - учении о растворах, коллоидной химии, теории кристаллизации, поэтому понятие возникло гораздо раньше, чем подходящий термин. В разных областях химии утверждалось независимо и под собственным именем. Ассоциаты, зародыши, комплексы, сиботаксические группы, агрегаты, сольваты - все эти названия в конце концов обозначают примерно одно и то же. Разнобой в терминологии не случаен, он отражает историю осмысления понятия. Ныне слово «кластер» оказалось своего рода знаменем, под которым собираются ограниченные коллективы частиц из самых разных областей; представление о кластерах как малых коллективах имеет значение не только в химии, но и в астрономии, физике, биологии, социологии, по-видимому, оно прочно утверждается в общей теории систем (это обусловливает популярность термина). Но мы ограничиваемся химическими объектами.

Если отвлечься от неизбежных злоупотреблений модой, то причины бурного роста химической литературы, в которой фигурирует «кластер», оказываются вполне серьезными и вескими.

Современные физико-химические методы эксперимента позволили перейти от гипотез о существовании непостоянных групп к их фактическому изучению, а развитие вычислительной техники сделало возможным теоретическое «построение» кластеров и расчет их свойств при тех или иных предположениях о взаимодействиях между членами группы.

Эти исследования, захватывающие все глубже строение и превращение объектов химии (в особенности недоступный прежде мир короткоживущих форм и состояний), приводят к пониманию того, что кластеры - не экзотика, а весьма общая форма (или состояние) вещества.

Свидетельство злободневности темы - появление не только многих сотен и даже тысяч статей, более или менее частных, но и попытки ее общего обзора.


1. Общие сведенья о понятии «кластер»

Представления о непостоянных агрегатах атомов и молекул восходят ко второй половине прошлого века, когда в химии утвердилось атомно-молекулярное учение, а в физике - «кинетическая теория материи». Такие представления не раз выдвигались для объяснения поведения жидкостей и жидких растворов, образования осадков и коллоидов, электропроводности жидких электролитов и электрических разрядов в газах. К.М. Гульдберг и П. Вааге, Д.И. Менделеев, В. Рамзай в химии, Дж.К. Максвелл, В.К. Рентген, П. Ланжевен в физике и много других ученых, менее знаменитых, так или иначе участвовали в постепенном становлении понятия, ныне обозначаемого термином «кластер». Сам этот термин впервые появился в научной литературе в 1937 году в известных работах Дж. Е. Майера по статистической механике неидеальных газов. Первоначально он означал группу атомов или молекул, выделяемую в газе по определенным формально-математическим признакам. Здесь введение кластеров было еще чисто математическим шагом. (Наиболее ясно это иллюстрируется тем, что в теории Майера число кластеров может быть отрицательным.) Однако вскоре, в особенности благодаря Я.И. Френкелю, стало ясно, что при описании неидеальных газов, и особенно предпереходных состояний, можно опираться на представление о действительном образовании групп, или агрегатов, молекул (Я.И. Френкель назвал их «гетерофазными флюктуациями»). Строгая теория неидеальных газов, основанная на представлении о физических кластерах, была развита в статистической механике Т. Хиллом в 1955 году.

В течение 50-х годов название и понятие «кластер» стало весьма употребительным в теориях конденсации и вообще образования новой фазы. На конец десятилетия приходится и дальнейшее распространение области применения этого понятия: кластерными соединениями, по предложению Ф. Коттона, были названы химические соединения (например, многоядерные карбонилы металлов и их производные), содержащие несколько связанных друг с другом атомов металла, которые окружены лигандами.

В течение второй половины 60-х годов представления о кластерах делаются все более популярными в разных областях химии, в теории жидкого состояния, в учении о растворах и соединениях непостоянного состава (здесь новым явилось продвижение представления о кластерах из области исследований твердых растворов в смежную область нестехиометрических твердых соединений), в плазмохимии, в элементоорганической химии. В конце 60-х - начале 70-х годов кластеры становятся объектом теоретических («компьютерных») исследований.

Можно считать, что к началу нашего десятилетия становление общего понятия «кластер» завершилось.

Разные авторы вкладывают в термин «кластер» неодинаковое содержание, хотя во всех случаях сохраняется оттенок первоначального значения этого английского слова (cluster) - груда, скопление, пучок, гроздь, группа. В дальнейшем мы будем придерживаться следующего определения: кластер - это группа из небольшого (счетного) и, вообще говоря, переменного числа взаимодействующих частиц (атомов, молекул, ионов).

2. Частицы в кластере

Естественно спросить, каковы нижняя и верхняя границы числа частиц в кластере? Ответ на первую половину вопроса очевиден: минимальное число членов, образующих группу, равно двум. Верхняя граница, напротив, размыта и неотчетлива. Но ясно, что она должна находиться в той области, где добавление еще одного члена уже не изменяет свойств кластера: в этой области и заканчивается переход из количества в качество. Ниже мы увидим, что эта граница не вполне однозначна, но практически большая часть изменений, существенных для химика, заканчивается при ~103 частицах в группе.

Следует различать свободные кластеры и стабилизированные теми или иными факторами; в последнем случае кластер имеет более сложный состав и приобретает структуру, в которой целесообразно выделять «тело» кластера (т. е. собственно группу взаимодействующих частиц рассматриваемого типа) и стабилизирующие элементы, например «оболочку» из лигандов, или центральную частицу (часто это ион), или совокупность того и другого. Наличие или отсутствие стабилизации резко сказывается на поведении кластеров, и прежде всего на продолжительности их жизни: для стабилизированных кластеров она такая же, как для обычных молекул, для нестабилизированных нижней границей времени жизни разумно считать продолжительность столкновения в газокинетическом смысле, т. е. 10~13-К)-12 с; то же можно распространить и на простые и сложные кластеры в жидкой фазе. С точки зрения химика, кажется правильным считать кластерами только такие образования, которые существуют достаточно долго, чтобы участвовать в химическом превращении в качестве самостоятельной единицы. При этом остается неясным, при какой же продолжительности жизни кластеров их образование становится кинетически ощутимым. Фактических данных для ответа на этот вопрос мало, но с ростом «разрешающей способности» экспериментальных методов постепенно выясняется важная кинетическая роль даже весьма короткоживущих состояний.

Разнообразие типов кластеров определяется возможностью сочетания различных сред и способов стабилизации с множеством вариантов построения тела кластера из частиц той или иной природы.

Не приводя здесь развернутой классификации, поясним это на примере. В системах, состоящих из компонента А, образующего тело кластеров Ag, и компонента В, функция последнего может отвечать одному из четырех вариантов: 1) ВАЯ: В - заряд (электрон, позитрон) или центральная частица (ион, молекула); 2) АВ,: В - лиганд; 3) АА, Воэ: В - матрица; 4) AgB: В - второй компонент тела кластера. Реализация этих вариантов различна в газовых, жидких, аморфных и кристаллических средах. Так, для варианта «BAg» примерами являются соответственно: зародыши пара, конденсирующегося на молекулярных ядрах; сольваты ионов и молекул в жидких растворах; металлические кластеры в металлсилицидных, металлфосфидных и других стеклах; субоксиды щелочных металлов. Для варианта «АВ» примерами служат мицеллы поверхностно активных веществ (ПАВ) в жидких средах; кластеры воды в аморфных органических полимерах; кластерные кристаллы (металлы в цеолитах) и, наконец, адсорбаты кластерной дисперсности для сред, представляющих собой межфазные поверхности. Аналогично этому для разных сред легко найти случаи, отвечающие вариантам «АгВг» и «AgBj». При трех компонентах - А, В и С - возможны уже десять вариантов их функций в построении тела кластера и его стабилизации. И почти для каждой из сред, включая меж-, фазные поверхности, можно указать примеры реализации этих вариантов.

Таково разнообразие наших объектов.

3. Методы исследования

В принципе для исследования свойств и поведения кластеров различных типов могут быть использованы решительно все методы, какими пользуется химия вообще. Однако пригодность и степень эффективности того или иного из них критическим образом зависят от устойчивости исследуемых кластеров; естественно, что к устойчивым системам применимы более многочисленные и более разнообразные по принципам методы наблюдений и измерений. Кроме того, имеет значение, находятся кластеры в равновесии со средой или нет: в первом случае концентрация их постоянна во времени, хотя и мала для короткоживущих объединений, неравновесные же группы частиц приходится специально создавать.

При малой продолжительности жизни кластеров внимание исследователя невольно сосредоточивается на процессах их возникновения и разрушения, если же продолжительность жизни велика, то занимаются прежде всего изучением «стационарных» свойств этих объектов.

При работе с прочно стабилизированными или хотя бы с равновесными кластерами их приготовление и исследование легко могут быть разделены во времени и пространстве.

Для получения стабилизированных кластеров чаще всего используют процессы образования новой фазы: эти процессы буквально останавливают в их зародыше, фиксируя тем или иным способом возникающие группы частиц.