Смекни!
smekni.com

Кинетика химических реакций (стр. 1 из 5)

Содержание

1. Введение

2. Задачи химической кинетики

3. Химический процесс и его стадии

4. Открытые и замкнутые системы

5. Закон сохранения массы и энергии

6. Химические превращения и тепловые эффекты химических реакций

7. Теплота образования химических соединений

8. Закон Гесса и его следствие

9. Скорость химических реакций

9.1 Основные понятия

9.2 Зависимость скорости гомогенных реакций от концентрации (закон действующих масс)

9.3 Константа скорости химических реакций, ее зависимость от температуры.

10. Энергия активации

11. Явление катализа

12. Обратимые реакции

13. Химическое равновесие

13.1 Константа равновесия, степень превращения

13.2 Принцип Ле Шателье.

13.3 Смещение химического равновесия под действием температуры и давления

14. Гомогенные и гетерогенные реакции

15. Основные типы элементарных реакций

16. Окислительно-восстановительные реакции

Вывод

Литература

1. Введение

Кинетика химических реакций, учение о химических процессах — о законах их протекания во времени, скоростях и механизмах. При исследовании химических реакций, в частности, используемых в химической технологии, применяют как методы химической термодинамики, так и методы химической кинетики. Химическая термодинамика позволяет вычислить тепловой эффект данной реакции, а также предсказать, осуществима ли данная реакция и ее состояние равновесия, т. е. предел, до которого она может протекать. Для этого необходимо иметь данные о термодинамических параметрах всех компонентов только в начальном и конечном состояниях системы. Но для практики нужно знать не только возможность осуществления данной реакции, но и скорость ее протекания. Ответ на этот вопрос дает химическая кинетика. Для получения кинетических закономерностей должны быть известны не только начальное и конечное состояния системы, но и путь, по которому протекает реакция, а он обычно заранее неизвестен. Поэтому получить кинетические закономерности сложнее, чем термодинамические. Зная эти закономерности (математическую модель) изучаемой химической реакции и ее кинетические параметры, можно рассчитать ее скорость н оптимальные условия проведения в промышленном реакторе. С исследованиями кинетики химических реакций связаны важнейшие направления современной химии и химической промышленности: разработка рациональных принципов управления химическими процессами; стимулирование полезных и торможение и подавление нежелательных химических реакций; создание новых и усовершенствование существующих процессов и аппаратов в химической технологии; изучение поведения химических продуктов, материалов и изделий из них в различных условиях применения и эксплуатации.

Многие уравнения, описывающие протекание во времени химических реакций, пригодны и для описания ряда физических процессов (распад радиоактивных ядер, деление ядерного горючего), а также для количественной характеристики развития некоторых биохимических, в том числе ферментативных, и других биологических процессов (нормальный и злокачественный рост тканей, развитие лучевого поражения, кинетические критерии оценки эффективности лечения).

Отдельные работы в области кинетики химических реакций были выполнены ещё в середине 19 в. В 1850 немецкий химик Л. Вильгельми изучил скорость инверсии тростникового сахара, в 1862—63 М. Бертло — скорость реакций этерификации. В работах Н. А. Меншуткина получили развитие (1882—90) такие основные проблемы химии, как связь между строением веществ и их реакционной способностью, влияние среды на ход химического превращения. В 80-х гг. 19 в. Я. Вант-Гофф и С. Аррениус сформулировали основные законы, управляющие простыми химическими реакциями, и дали трактовку этих законов, исходя из молекулярно-кинетической теории. Дальнейшее развитие этих работ привело к созданию в 30-х гг. 20 в. Г. Эйрингом и М. Поляни на базе квантовой механики и статистической физики теории абсолютных скоростей реакций, открывающей перспективы расчёта скоростей простых (элементарных) реакций, исходя из свойств реагирующих частиц.

Параллельно развивались работы по изучению кинетики сложных реакций. Среди первых в этой области были исследования А. Н. Баха и Н. А. Шилова по реакциям окисления. Они включили в предмет химической кинетики представления о решающей роли промежуточных продуктов и промежуточных реакций в химическом превращении. Большую роль в разработке общих методов подхода к изучению сложных реакций сыграли работы М. Боденштейна. Выдающимся достижением теории сложных химических процессов явилась созданная в 30-х гг. Н. Н. Семеновым общая теория цепных реакций.Широкие исследования механизма сложных кинетических процессов, особенно цепных реакций, были выполнены С. Н. Хиншелвудом.

2. Задачи химической кинетики

Химическая кинетикатрактует качественные и количественные изменения в ходе химического процесса, происходящие во времени. Обычно эту общую задачу подразделяют на две более конкретные:

1) выявление механизма реакции установление элементарных стадий процесса и последовательности их протекания (качественные изменения);

2) количественное описание химической реакцииустановление строгих соотношений, которые могли бы удовлетворительно предсказывать изменения количеств исходных реагентов и продуктов по мере протекания реакции.

Также в зависимости от необходимости нахождения концентрации веществ по схеме реакции либо восстановление схемы по известным концентрациям ставится задача прямая или обратная.

1) Под прямой задачей химической кинетики понимают задачу нахождения концентраций участвующих в реакции веществ в любой момент времени, исходя из известных начальных концентраций, схемы реакции и констант скоростей отдельных стадий.

2) Обратная задача химической кинетики — восстановление по известной зависимости концентрации веществ от времени схемы реакции и констант скорости.


3. Химический процесс и его стадии

Химическая реакция (процесс) состоит в превращении одного или нескольких химических веществ, называемых исходными веществами, в одно или несколько других химических веществ, называемых продуктами реакции. Химические реакции, как правило, являются сложными, т. е. протекают через ряд элементарных стадий. Элементарная стадия является наиболее простой составной частью сложной реакции: каждый акт элементарной стадии представляет собой результат непосредственного взаимодействия и превращения нескольких частиц. Совокупность реакций из элементарных стадий называется механизмом реакции. При протекании реакции по стадиям получаются и расходуются промежуточные вещества. Промежуточными веществами обычно являются активные частицы с не спаренными электронами, так называемые радикалы. Сложные реакции могут состоять из двусторонних, параллельных и последовательных элементарных стадий. Все элементарные стадии являются двусторонними (обратимыми), т. е. - состоят из двух взаимно противоположных элементарных реакций, которые одновременно протекают в прямом и обратном направлениях, но с разной скоростью. При параллельном протекании нескольких элементарных стадий данное вещество одновременно расходуется по нескольким путям с образованием разных продуктов. При последовательном протекании элементарных стадий промежуточное вещество, полученное в одной стадии, расходуется другой. Механизм большинства реакций точно не известен, так как промежуточные вещества обычно очень неустойчивы и доказать экспериментально их существование довольно сложно. Поэтому, как правило, у сложных реакций промежуточные вещества неизвестны, а известен только наиболее вероятный механизм, т. е. предполагаемый механизм протекания реакции по стадиям, на основе которого можно получить закономерность (математическую модель), адекватно отражающую основные черты реального процесса. Таким образом, элементарной стадией химической реакции называется сумма актов химического превращения при одновременном сближении (столкновении) нескольких (обычно двух) частиц; при этом энергия связей перераспределяется между атомами с образованием активированного комплекса с его последующим распадом и получением новых частиц. В случае мономолекулярного акта образование активированного комплекса происходит за счет перераспределения энергии между связями атомов внутри молекулы, как следствие ее активации в результате внешних воздействий.

4. Открытые и замкнутые системы

Системы, в которых происходит химическое превращение, могут быть замкнутыми или открытыми.

Замкнутой называется система, в которой отсутствует материальный обмен с окружающей средой. В замкнутую систему в начале процесса вводится некоторое количество исходных веществ, которые далее претерпевают ряд химических превращений – переходят в промежуточные вещества и продукты реакции, но все эти вещества до окончания процесса остаются в пределах рассматриваемой системы, т.е. не выводятся из реакционного сосуда.

С некоторой степенью) точности замкнутой системой можно считать каждый элемент объема в ламинарном потоке. Если струя газа или жидкости проходит через реакционный сосуд, в котором (например, достаточно высокая температура или присутствие необходимого катализатора), то при отсутствии конвекции и достаточно малой скорости диффузии вещества в направлении потока каждый объем реакционной смеси можно рассматривать как независимой от остальных, т. е. как перемещающуюся в пространстве замкнутую систему. Такой способ проведения химических реакций широк используется в научно-исследовательской работе и в промышленности. Соответствующие реакторы получили название реакторы идеального смешения.

С точки зрения химической кинетики важнейшей особенностью замкнутых систем является то обстоятельство, что изменение количества какого-либо химического соединении в таких системах происходит только в результате химического превращения. Поэтому суммарное число моделей каждого из элементов, присутствующих в системе, остается неизменным на протяжении всего химического процесса.