Смекни!
smekni.com

Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов (стр. 4 из 7)

Очень существенным недостатком метода Гамметта является также необходимость использования нескольких индикаторов при определении кислотности. Согласно теории индикаторов, заметить изменение окраски, по которой судят об изменении Н0, можно только тогда, когда будет присутствовать не меньше 10% одной формы индикатора в присутствии 90% другой; можно заметить окраску вещества ВН+, когда оно будет составлять более 10% от вещества В, и наоборот. С помощью одного индикатора можно определить изменение кислотности только в пределах 2 единиц рН и Н0.

В воде шкала рН=14; следовательно, нужно иметь семь индикатором для оценки кислотности.

Рассмотрим, насколько метод Гаммета пригоден для определения кислотности в пределах одного неводного растворителя.

Нельзя принимать, как это делает Гамметт, что в неводных растворах соотношение между константами индикаторов остается таким же, как и в воде. Как известно, растворитель оказывает дифференцирующее действие. Оно сводится к тому, что относительная сила кислот или оснований изменяется при переходе от одного растворителя к другому.

Разность в pК двух индикаторов основания В1и В2 определится выра­жением:

pKA1-pKA2=-lg

(2.4.10)

Введем концентрационные активности а* и коэффициенты активности

тогда получим:

pKA1-pKA2=-lg

(2.4.11)

Из уравнения (26) следует, что разность рK определяется не только соотношением активностей а*, но и соотношением коэффициентов актив­ности

. Нет никаких оснований утверждать, что

(2.4.12)

и, следовательно, соотношение рКА не остается неизменным.

Это обстоятельство затрудняет использование метода Гамметта и в пре­делах одного растворителя. Необходима экспериментальная проверка pKиндикаторов в каждом растворителе.

Есть и третий недостаток метода Гамметта, заключающийся в том, что иногда окраска индикатора изменяется не в связи с изменением соотношения между разными формами индикаторов ВН+ и В, а в связи с тем, что окраска одной из форм индикатора изменяется под влиянием растворителя. Однако главный недостаток метода Гамметта состоит в том, что влияние раствори­телей па заряженную и незаряженную формы индикатора не одинаково, в связи с чем Н0 не передает истинной кислотности неводных растворов.

Для оценки кислотности кроме функций Н0 и Н(-) предложены функция Н(+), основанная на зависимости положения равно­весия реакции ВН2+= В+ + Н+ от кислотности, а также функция кислот­ности I0 , основанная на зависимости положения равновесия реакции ROH + H+ =R+ + H2O (R+ -ион карбония, ROH-арилкарбинол) от кис­лотности.

Каждая функция кислотности определяется значением соответствующихвеличин рК и отношением концентраций кислотной и основной форм инди­катора:

H0=pKBH++lg(cB/cBH+) H(-)=pKBH+lg(cB-/cBH)

I0=pKR++lg(cROH/cR+) H(+)=pKBH2++lg(cB+/cBH2+)

Соотношение между этими функциями кислотности и величиной истинной единой кислотности рА = -lgaH+ определяется следующими выражениями:

из которых следует, что они не совпадают между собой и что ни один из них не передает истинной кислотности.


2.5Метод нормального потенциала Плескова

Исследуя потенциалы щелочных металлов — лития, натрия, калия , рубидия, цезия, - Плесков установил, что э. д. с. цепи Rb|Rb+||Cs+|Cs оказывается неизменной во многих растворителях. На основании этого Плесков высказал предположение о том, что потенциал цезиевого или рубидиевого электродов следует считать неизменным в различных растворителях, т, е. считать, что э. д. с. Pt(H2)|H+||Cs+|Сsпри переходе от одного растворителя к другому изменяется не за счет цезиевого электрода, а только за счет водородного электрода.

Однако неизменность разности потенциалов рубидия и цезия не означает, что каждый из этих потенциалов не изменяется при переходе от растворителя к растворителю - они изменяются, но в одинаковой степени.

Этот вывод был сделан на том основании , что изменение потенциала цепи Hg(Cs) | CsCl | AgCl, Ag при переходе от воды к спирту близко к изменению потенциала цепи Pt(H2)|HCl|AgCl, Ag. В этих цепях анионы одинаковы; следовательно, изменения потенциалов водородного и цезиевого электродов (во всяком случае при переходе от воды к спиртам) близки между собой. Поэтому не было оснований предполагать,, что изменение потенциала цепи Pt(H2)|H+|Сs+| Cs во всех растворителях обязано только водородному электроду; изменение потенциала обязано и водородному и цезиевому электродам. Это говорит о том, что в общем нельзя основывать оценку кислотности в неводных растворах на предположении Плескова.

Предположение Плескова оправдывается но отношению к растворителям с высокой диэлектрической проницаемостью и резко отличной от воды основностью (аммиак и муравьиная кислота), однако нельзя распространить этот результат на другие растворители без эксперименталь­ной проверки.

Строго, единая кислотность, которую мы обозначаем рА, отнесенная к воде в качестве единого стандартного состояния, определяется величиной отрицательного логарифма активности иона МН+:

(2.5.1)

где

абсолютная активность иона МН+ ,отнесенная к активности протона в разбавленном водном растворе в качестве единого стандартного состояния.

Такая оценка кислотности является термодинамически строго обосно­ванной. Единая активность ионов лиония, отнесенная к воде в качестве стандартного состояния, может быть выражена так:

(2.5.2)

Подставляя эту величину в уравнение (2.5.1), получим:

(2.5.3)

в котором активность а* отнесена к бесконечно разбавленному раствору ионов в неводной среде, а коэффициент

отнесен к воде в качестве стан­дартного состояния.

Величина —lg а*МН+ называется рНр. Она может быть измерена для любого неводного раствора против стандарта в том же самом неводном рас­творе. В определении этой величины затруднений нет.

Следовательно

pA = pHр

(2.5.4)

Это однозначное определение величины рА.

2.6. Применение средних коэффициентов активности

ионов для оценки единой шкалы кислотности

Для оценки единой шкалы кислотности можно воспользоваться сред­ними коэффициентами активности ионов сильной соляной кислоты.

Было установлено, что они могут быть определены только для суммы электролитов в целом. Эти величины хорошо известны для ионов ряда сильных кислот, особенно для HCl во многих растворителях. Например, для этилового спирта 2lg

. Однако какая часть величины 5,02 составляет lg
и какая часть lg
мы незнаем. В связи с этим было предложено поступать так: принять, что средний коэффициент активности ионов кислоты равен коэффи­циенту активности ионов лиония, т. е. предположить, что:

lg

(2.6.1)

Из этого предположения следует, что величина рА определяется выра­жением

(2.6.2)

Такой прием вносит определенную ошибку, обусловленную различием в величинах

протонов и анионов кислот, однако сравнение
для разных кислот показало, что эти величины близки между собой; например,

и этиловом спирте

,
,
и т.д. Это же наблюдается и для других растворителей.

Эксперименты показывают, что величины

ионов кислот в спиртам лишь несколько отличаются от величины:
ионов солей. Поэтому нельзя предполагать, что изменения энергии сольватации ионов лиония резко отличается от изменения энергии сольватации остальных катионов. Во всяком случае, величина
ионов кислот является вполне однозначной и, вероятно, оценивает изменение кислотности с большей надежностью, чем величины Н0, Н(-), рННас и т.д.