Смекни!
smekni.com

Планирование дискриминирующих экспериментов (стр. 1 из 2)

Для дискриминации гипотез используют эксперименты различного типа.

Химические эксперименты. Различные тестовые реакции часто позволяют определить вероятность участия того или иного вещества в последовательности реакций, протекающих в системе, и получить информацию о состоянии катализатора. Например, предполагается последовательность превращений

(1)

Введение вещества В будет увеличивать выход и скорость образования С. Введение реагента связывающего В или реагирующего с предполагаемым интермедиатом В с образованием продукта D позволяет оценить вероятность схемы (1). Например, схема механизма синтеза винилхлорида включает интермедиат ClHgCH=CHCl

.

Известно, что реакция окислителя CuCl2 с этим интермедиатом приводит к его окислительному деметаллированию по реакции

Добавление CuCl2 в стационарных условиях гомогенного процесса синтеза винилхлорида приводит к снижению скорости образования винилхлорида и к появлению нового продукта 1,2-транс-дихлорэтилена, что согласуется с предполагавшейся схемой механизма.

Физико–химический эксперимент. Здесь идёт речь в первую очередь о применении спектральных методов – ЭПР, ЯМР, ИК- и УФ- спектральные методы, γ–резонансная спектроскопия, фотоэлектронная спектроскопия (РФЭС), рентгено-фазовый анализ. Эти методы, прежде всего, дают информацию о состоянии катализаторов, но полезны также для индентификации предполагаемых интермедиатов (в растворах и на поверхности).

Изотопные эксперименты. Использование реагентов с мечеными атомами (изотопные метки) позволяют проводить дискриминацию гипотез очень эффективно, поскольку перенос изотопной метки в различные положения продукта определяется схемой механизма реакции. Например, при гидрировании смеси СО и 14СО2 на медноцинковом катализаторе синтеза метанола было показано, что на начальном этапе процесса получается меченый метанол 14СН3ОН. Таким образом, синтез метанола из CO и H2 идет по схеме

Кинетические эксперименты. Кинетические исследования являются необходимыми дискриминирующими экспериментами, однако такие эксперименты, направленные на идентификацию кинетических моделей, следует проводить на возможно более позднем этапе исследования для выбора адекватной кинетической модели среди оставшихся (“работающих”) гипотез после других дискриминирующих экспериментов (сложность эксперимента, высокая стоимость). Особенно эффективно измерение кинетических изотопных эффектов, поскольку замещение атомов изотопами может привести к заметному изменению скорости реакции (например, в ряду 1Н → 2D → 3T), если соответствующие связи разрываются в стадиях процесса (до лимитирующей включительно).

Для выбора кинетического уравнения и оценки констант, входящих в него, (т.е. для решения обратной задачи химической кинетики), часто используют многофакторный эксперимент. Однако для дискриминации моделей более эффективен однофакторный эксперимент, поскольку решения обратных кинетических задач, по ряду причин, не является строгой однозначной процедурой.

При постановке любых экспериментов, и особенно кинетических, необходимо располагать максимально возможной предварительной информацией о состоянии катализатора в растворах, природе активных центров на поверхности, обеспечить воспроизводимость результатов и анализ материального баланса. Необходимо обеспечить также отсутствие любых факторов, искажающих кинетический закон (перенос тепла, перенос массы за счёт перемешивания и диффузии), т.е. идеальность реактора, а также постоянство различных параметров системы при варьировании концентраций реагентов.

Идеальные реакторы

Выбор реактора определяется, прежде всего, типом изучаемого процесса – гомогенный или гетерогенный, гомофазный или гетерофазный. В зависимости от структуры потока реакционной массы все идеальные реакционные устройства можно разделить на три вида.

Закрытый реактор полного смешения. Применяется для гомогенных, гетерогенных, гомофазных и гетерофазных процессов. Необходимое условие – отсутствие градиентов концентрации и температуры по объёму

. В системах газ – жидкость и газ – жидкость – твёрдый катализатор количество реагирующего газа определяется с помощью измерения объёма поглощённого газа (показания бюреток), по изменению давления в системе или по изменению состава газа. Интегральная форма уравнения в таком реакторе:

(2)

где t – время реакции, |RA| – кинетическое уравнение для скорости изменения реагента А, А – один из исходных реагентов.

Проточный реактор идеального вытеснения. Модель такого интегрального реактора (3)

(3)

позволяет найти интегральные выражения для объёма реактора V или времени контакта τ

(4)

где – Fi – мольный поток, α – степень превращения,

, W0 – начальная скорость потока.

При

, где U – объёмная скорость,

(5)

При W0 = W = const, τ – время контакта

Реактор этого типа должен обеспечить отсутствие градиентов температуры и линейной скорости

где l – длина трубы, D – диаметр трубы,w – линейная скорость потока, что трудно достижимо. В случае зёрен катализатора, заполняющих трубу, возникает эффект продольного перемешивания, искажающий кинетический закон изменения СА = f(τ). Реактор такого типа не рекомендуется использовать в кинетических исследованиях. В таких реакторах трудно бороться с наличием диффузионных осложнений. При больших скоростях потока, малых степенях превращения и тонком слое катализатора проточный реактор может стать безградиентным дифференциальным реактором, работать в кинетической области и позволяет получить скорость реакции в форме уравнения

(6)

Увеличение сложности интегрального кинетического уравнения в проточном реакторе идеального вытеснения хорошо отражает пример простой реакции

A = 2P (7)

идущей с увеличением объёма при простом виде зависимости |RA| = kCA. В этом случае для выражения величины СА необходимо использовать коэффициент изменения объёма потока ε.

(8)

где βi – стехиометрические коэффициенты в итоговом уравнение реакции (в нашем случае 2 – 1 = 1), γB и γи – отношения скоростей подачи других реагентов (WB0) и инертов (Wи) к WA0. В нашем случае γB и γи равны нулю. Таким образом, ε = 1. Тогда

и

(9)

(10)

Проточный реактор полного смешения. Этот реактор применим для всех типов реакционных систем и позволяет обеспечить

и
В случае газофазных гетерогенных систем катализатор помещают на лопостях мешалки, обеспечивая режим полного смешения и кинетическую область (отсутствие внешнедиффузионного торможения) или используют проточно-циркуляционные реакторы. Реакторы полного смешения могут быть открытыми не по всем реагентам. Например, один из реагентов находится в жидкой фазе в реакторе. А второй подаётся в реактор в виде газа.

В условиях стационарности, в проточном реакторе полного смешения скорость реакции описывается уравнением (11)

(11)

Необходимым условием использования всех типов реакторов для кинетических исследований является элиминирование влияния процессов переноса вещества (диффузионных процессов) на скорость химической реакции. Скорости подвода вещества к поверхности катализатора, внутрь пор зерна катализатора, к поверхности жидкости и в объём жидкой фазы из газа, скорость переноса вещества между двумя жидкими фазами должны заметно превышать скорости самого химического превращения.

Критерии отсутствия диффузионного торможения

Поскольку объёмная константа скорости диффузии βV вещества А к поверхности катализатора включает коэффициент диффузии D и толщину плёнки δ, в которой наблюдается изменение концентрации от СV (в объёме) до СS (у поверхности)

важными факторами, определяющими степень диффузионного торможения в случае внешней диффузии, являются линейная скорость потока (интенсивность перемешивания), давление и температура (влияние на D). Так, критерий подобия Рейнольдса (Re), определяющий турбулентность потока, связан с критерием Нуссельта (Nu), включающим константу скорости диффузии β и D.