Смекни!
smekni.com

Ферменты (стр. 1 из 3)

РЕФЕРАТ

Ферменты


Ферменты – биологические катализаторы, почти все ферменты являются белками (хотя недавно выяснилось, что некоторые реакции катализируют РНК, а не белки). Вещества, участвующие в реакции, которую катализирует фермент, называются субстратами. От обычных катализаторов ферменты отличает несколько особенностей.

Во-первых, ферменты обладают очень высокой специфичностью: они узнают такие небольшие отличия в структуре веществ, как наличие лишней –СН2-группы, умеют различать цис- и транс-изомеры, D - и L-изомеры. Некоторые ферменты, однако, обладают не очень строгой специфичностью – так, фермент желудочного сока пепсин расщепляет пептидные связи, образованные как ароматическими, так и кислыми аминокислотами (заметим, что для выполнения биологической функции пепсину и не нужна высокая специфичность: наоборот, чем больше разных пептидных связей он расщепит, тем лучше переварится пища в желудке).

Во-вторых, ферменты обладают чрезвычайно высокой эффективностью, значительно превосходящей эффективность обычных катализаторов. Так, одна молекула фермента каталазы, ускоряющего разложение перекиси водорода на воду и кислород, успевает расщепить 200 000 молекул субстрата за одну секунду.

В-третьих, ферменты теряют свою активность при повышении температуры. Мы говорили в уроке 5, что при высоких температурах белки подвергаются денатурации: они теряют свою природную конформацию и уже не могут выполнять биологические функции.

Наконец, в четвертых, многие (хотя и не все) ферменты подвергаются регуляции – в зависимости от нужд клетки и организма их активность может возрастать, а может и уменьшаться.

Ферменты давно используются в медицине. Так, во многих клиниках проводят измерение активности различных форм ферментов лактатдегидрогеназы и трансаминазы – их соотношение изменяется при таких болезнях как инфаркт миокарда, поражения печени, мышечные дистрофии; фермент стрептокиназу врачи применяют для рассасывания тромбов; ферменты трипсин и коллагеназа используются для рассасывания рубцов. В биотехнологии ферменты применяются еще шире. Амилаза, расщепляющая крахмал, используется в пивоваренной, хлебопекарной (облегчает переработку крахмала дрожжами), текстильной и кожевенной промышленности (умягчает сырье). Различные протеазы, расщепляющие белки, применяют в пищевой (делают старое мясо более мягким, сворачивают молоко в сыроварении) и кожевенной промышленности. В пищевой промышленности используются инвертаза (расщепляет сахарозу), глюкоизомераза (изомеризует глюкозу в более сладкую фруктозу), трансглютаминаза (сшивает белки, улучшая структуру продукта), липазы (расщепляют липиды, применяются для получения более ценных пищевых жиров), пектинметилэстераза (осветляет фруктовые соки) и т.д. Протеазы и липазы часто добавляют в стиральные порошки для лучшего удаления грязи.

Участок молекулы фермента, который непосредственно взаимодействует с субстратом, называется активным центром фермента. В активном центре можно выделить две области: субстрат-связывающий участок и каталитический участок. Субстрат-связывающий участок определяет специфичность узнавания ферментом своего субстрата, а каталитический непосредственно производит химическое превращение субстрата в продукт. В активном центре оказываются сближенными аминокислотные остатки, далеко удаленные друг от друга в первичной структуре. Активный центр занимает небольшую часть от всей белковой глобулы фермента, все остальные аминокислоты нужны для поддержания аминокислотных остатков активного центра в нужном положении.

Высокая специфичность ферментов объясняется тем, что субстрат подходит к их активному центру как ключ к замку.

В молекуле субстрата могут быть положительно и отрицательно заряженные группы, поляризованные группы с частичными зарядами, а также гидрофобные зоны. Соответственно, в субстрат-связывающем участке активного центра напротив положительно заряженных групп субстрата будут располагаться отрицательно заряженные группы фермента, напротив отрицательно заряженных – положительно заряженные, а напротив гидрофобных фрагментов субстрата – гидрофобные аминокислотные остатки. Таким образом, связывание фермента с субстратом происходит благодаря ионным, водородным и гидрофобным взаимодействиям.

В настоящее время детально изучен механизм работы далеко не всех ферментов. Одним из наиболее изученных является фермент поджелудочной железы α-химотрипсин, расщепляющий белки пищи в двенадцатиперстной кишке и тонком кишечнике. Он гидролизует пептидные связи, расположенные около ароматических аминокислот субстрата. В каталитическом участке активного центра α-химотрипсина находятся три аминокислотных остатка: серин, гистидин и аспарагиновая кислота. В третичной структуре фермента они тесно прилегают друг другу, но в первичной структуре расположены далеко: гистидин является 57-й аминокислотой с N-конца, аспартат – 102-й, серин – 195-й.

В начале процесса катализа в активный центр фермента заходит субстрат, для нас важна одна-единственная пептидная связь в его молекуле (этап 1 на рисунке). Появление субстрата вызывает перемещение иона Н+ от серина на гистидин, а образовавшийся анион серина немедленно атакует карбонильный атом углерода в пептидной связи субстрата (этап 2 на рисунке). Образуется очень короткоживущее промежуточное соединение, в котором атом углерода субстрата связан с двумя атомами кислорода, одним атомом азота и одни атомом углерода. Это соединение быстро распадается, причем одна его половинка остается ковалентно связанной с остатком серина, а другая забирает ион Н+ от гистидина и становится полностью свободной (этап 3 на рисунке). Такое ковалентное соединение фермента с частью субстрата называется ацил-фермент. Затем часть субстрата со свободной аминогруппой уходит из активного центра (этап 4 на рисунке). Для завершения реакции необходимо гидролизовать ацил-фермент, и в активный центр химотрипсина приходит молекула воды (этап 5 на рисунке). Опять образуется короткоживущий промежуточный комплекс, в котором атом углерода субстрата связан с тремя атомами кислорода и одни атомом углерода (этап 6 на рисунке). Этот комплекс также быстро распадается, при этом ковалентная связь между остатком субстрата и фермента разрывается (этап 7 на рисунке). Наконец, остаток субстрата покидает активный центр фермента, и он возвращается в исходное состояние (этап 8 на рисунке). В результате реакция гидролиза пептидной связи протекает через множество промежуточных этапов. Без фермента реакция идет очень медленно, а каждая из промежуточных стадий, протекающих в активном центре фермента, идет быстро, в итоге фермент резко ускоряет протекание реакции.

Скорость химической реакции – это изменение концентрации продукта в единицу времени. Еще в 1913 году Михаелис и Ментен вывели уравнение зависимости скорости простейшей ферментативной реакции S → P от концентрации субстрата. Чтобы лучше понять биохимическую основу этого математического уравнения, представим себе условия протекания ферментативной реакции, когда субстрата очень мало. Большинство молекул фермента при этом не связано с субстратом, они "бродят без работы", и скорость реакции мала. Если повышать концентрацию субстрата, то скорость реакции растет почти линейно. Но бесконечно скорость реакции повышаться не может: при очень большой концентрации субстрата все молекулы фермента окажутся связаны с ним – весь фермент перейдет в фермент-субстратный комплекс. Скорость реакции уже не будет расти при повышении концентрации, и кривая скорости будет стремиться к асимптоте. Математически это уравнение выглядит так:

где V – скорость реакции, [S] – концентрация субстрата, Vмакс – максимальная скорость реакции, достигаемая при бесконечной концентрации субстрата, Kм – константа Михаелиса.

Скорость ферментативной реакции может быть замедлена специальными веществами – ингибиторами. Некоторые ингибиторы ферментов – смертельные яды для человека, тогда как другие являются ценными лекарствами. К таким лекарствам относятся, например, сульфаниламидные препараты. Многим видам болезнетворных бактерий для роста необходима пара-аминобензойная кислота H2N–C6H4–COOH. Они используют ее для синтеза более сложного соединения – фолиевой кислоты, важного витамина. Сульфаниламид H2N–C6H4–SO3H (бытовое название – стрептоцид) и его производные похожи на пара-аминобензойную кислоту, они связываются с ферментом, участвующим в синтезе фолиевой кислоты, занимая субстрат-связывающий участок активного центра. Но они не могут вступить в реакцию, которую катализирует фермент, а просто сидят в активном центре и не дают вступить в реакцию истинному субстрату – пара-аминобензойной кислоте. В результате бактерия не может синтезировать необходимый ей витамин. Человек не имеет этого фермента, он должен получать фолиевую кислоту с пищей, поэтому для человека сульфаниламидные препараты безвредны (однако они угнетают полезную микрофлору кишечника, так что принимать их следует только по назначению врача).

Сульфаниламид как бы конкурирует с пара-аминобензойной кислотой за активный центр фермента, поэтому такие ингибиторы получили название конкурентных. В присутствии конкурентных ингибиторов Vмакс не меняется – ведь при очень большой концентрации субстрат "победит" в конкуренции с ингибитором. Другой класс ингибиторов – неконкурентные – связываются не с активным центром фермента, а с другим его участком. Они не влияют на связывание субстрата, но уменьшают максимальную скорость, изменяя конформацию молекулы фермента. И конкурентные, и неконкурентные ингибиторы связываются с ферментом обратимо.

Существует еще один класс ингибиторов – необратимые. Они ковалентно связываются с молекулой фермента. Так, антибиотик пенициллин необратимо связывается с микробным ферментом гликопептид-транспептидазой, синтезирующим муреин (см. урок 3), и нарушает синтез клеточной стенки. Целый ряд мощных нервно-паралитических боевых отравляющих веществ (зарин, зоман, V-газы) необратимо ингибируют фермент ацетилхолин-эстеразу, необходимый для расслабления скелетных мышц. В результате отравления этими веществами дыхание становится невозможным из-за спазма дыхательных мышц, и наступает смерть – смертельная доза для человека вещества VX составляет всего 0,0004 г.