Смекни!
smekni.com

Полимераналогичные превращения хитозана (стр. 1 из 5)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

РЕАКЦИИ ДЕСТРУКЦИИ ХИТОЗАНА

ГИДРОЛИЗ

ОКИСЛЕНИЕ

ЩЕЛОЧНАЯ ДЕСТРУКЦИЯ, НЕ СОПРОВОЖДАЮЩАЯСЯ ОКИСЛЕНИЕМ

ДРУГИЕ ТИПЫ ДЕСТРУКЦИИ

РЕАКЦИИ ЗАМЕЩЕНИЯ

СЛОЖНЫЕ ЭФИРЫ ХИТОЗАНА

СЛОЖНЫЕ ЭФИРЫ ХИТОЗАНА С НЕОРГАНИЧЕСКИМИ КИСЛОТАМИ

ЭФИРЫ ХИТОЗАНА С ОРГАНИЧЕСКИМИ КИСЛОТАМИ

ПРОСТЫЕ ЭФИРЫ ХИТОЗАНА

ОБРАЗОВАНИЕ ПОПЕРЕЧНЫХ СВЯЗЕЙ

ВЗАИМОДЕЙСТВИЕ ХИТОЗАНА С ОСНОВАНИЯМИ

ПРИВИТЫЕ СОПОЛИМЕРЫ ХИТОЗАНА

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

Макромолекула хитозана является линейной и не содержит ни поперечных связей, ни разветвлений. Изучению свойств и химических реакций хитозана посвящено много работ. Наиболее полные данные приведены в десятитомной монографии Уордена и в двухтомнике Фауста; современные представления содержатся в опубликованных в последнее время работах Хойзера, Уайза и Яна, а также Отта. Хойзер и Спурлин дали достаточно полный обзор реакционной способности Хитозана[1].

При действии на хитозан различных химических реагентов может протекать одна или несколько химических реакций. Во-первых, при гидролизе и некоторых других типах деструкции происходит разрыв глюкозидной связи. Во-вторых, очень реакционноспособные гидроксильные группы могут подвергаться окислению или замещению. Наконец, может происходить разрыв связи С—Н или любой другой менее прочной связи, что, по-видимому, имеет место при различных методах деструкции и при инициировании привитой сополимеризации. Также протекает реакция по аминной группировке.

Прежде чем перейти к рассмотрению химических реакций, характерных для хитозана, следует отметить, что надмолекулярная структура хитозана — существенный фактор, определяющий направление химических реакций и свойства получаемых продуктов. В тех случаях, когда химические реакции протекают в разбавленных растворах, происходит статистическое распределение по цепи вводимых групп, но реакции этого типа не являются наиболее характерными для хитозана. В гетерогенных условиях реакции протекают обычно с большей скоростью в менее упорядоченных областях и с меньшей скоростью в более упорядоченных областях. Если в реакции участвуют гидроксильные группы, то свойства получаемых продуктов зависят как от интенсивности химической реакции, так и от доступности отдельных гидроксильных групп; оба эти фактора в свою очередь в значительной степени определяются надмолекулярной структурой хитозана. Существует несколько точек зрения по вопросу реакционной способности макромолекул хитозана [2].

Макромолекула хитозана содержит до 10 000 и более гидроксильных групп. Если при обработках, применяемых для модификации текстильных волокон или бумаги, часть гидроксильных групп вступает в реакцию, свойства исходных материалов значительно изменяются. Если реакция протекает настолько интенсивно, что в реакции участвует большая часть гидроксильных групп, получается новый продукт, который все же отличается от полностью прореагировавшего хитозана, вообще не содержащей свободных гидроксильных групп[1].


РЕАКЦИИ ДЕСТРУКЦИИ ХИТОЗАНА

ГИДРОЛИЗ

Опубликован ряд обзорных работ по гидролизу хитозана, среди них следует отметить работу Мак-Барнея, который рассматривает различие между реакциями, протекающими в растворе и в гетерогенной среде, и кинетику этих реакций[2].

Глюкозидная связь между элементарными звеньями в молекуле хитозана достаточно устойчива к щелочам и не устойчива к действию кислот. хитозан растворим в концентрированных минеральных кислотах (70%-ная H2S04, 40%-ная HC1 или 85%-ная Н3Р04) при 0-10°, причем процесс гидролиза сопровождается образованием оксониевых соединений и этерификацией. Следует учитывать также возможность реверсии моносахаридов. Поэтому для получения глюкозы необходимо дополнительно нагревать разбавленный раствор хитозана в кислоте. Если не доводить гидролиз до конца, можно выделить из реакционной среды различные олигосахариды[3].

Многие исследователи поддерживают мнение Фрайденберга о равноценности глюкозидных связей между элементарными звеньями макромолекулы природного хитозана, однако некоторые авторы приводят данные, указывающие на наличие в молекуле хитозана некоторого количества глюкозидных связей, наиболее легко гидролизуемых под действием кислот. Многие структурные изменения, превращение гидроксильных групп в карбоксильные или карбонильные, раскрытие пиранового цикла облегчают расщепление глюкозидной связи, а так как эти процессы имеют место при выделении и очистке хитозана, то предположение об однородности природного хитозана вполне допустимо. В связи с этим следует отметить, что регенерация хитозана из его эфиров, не сопровождающаяся изменениями химического состава, может тем не менее привести к снижению устойчивости к действию кислот. При проведении гидролиза хитозана в гетерогенной среде скорость этого процесса в начальной стадии всегда выше, чем на дальнейших стадиях. Это объясняется тем, что, хотя глюкозидные связи в хитозане равноценны, степень упорядоченности макромолекул на отдельных участках различна. Области со сравнительно низкой упорядоченностью более доступны действию гидролизующих реагентов. Как указывалось ранее, повышение скоростей реакций в более доступных областях и понижение этих скоростей в более упорядоченных участках хитозанового материала часто наблюдаются при осуществлении различных реакций хитозана в гетерогенной среде. После окончания начальной стадии гидролиза скорость процесса снижается и степень полимеризации достигает величины, которую Баттиста называет «предельной степенью полимеризации», соответствующей величине выделенных на этой стадии гидролиза кристаллитов. Водные растворы кислот, применяемые в качестве гидролизующих реагентов, вызывают значительное набухание хитозана, и концы цепи, образующиеся при разрыве глюкозидных связей, достаточно подвижны. Это может вызвать «рекристаллизацию» и повышение степени упорядоченности на этих участках по сравнению с упорядоченностью исходного хитозана. Следует отметить, что этот эффект повышения упорядоченности макромолекул на отдельных участках хитозановых структур сказывается на результатах исследования надмолекулярной структуры хитозана методом кислотного гидролиза. Этот метод заключается в определении зависимости скорости гидролиза от условий реакции и последующем экстраполировании линейного участка полученной кривой к нулевому времени гидролиза или в определении потери веса образцов хитозана через определенные отрезки времени и сопоставлении полученных результатов. Для гидролиза в этих исследованиях обычно применяют 2,5—6 н. растворы НС1[4].


ОКИСЛЕНИЕ

Реакция окисления хитозана достаточно сложна и представляет собой специфический процесс окисления. Имеется ряд обзорных работ, посвященных этому вопросу. Окислительному воздействию подвергаются в основном гидроксильные группы макромолекулы хитозана. В элементарном звене макромолекулы хитозана содержатся две вторичные гидроксильные группы (у второго и третьего углеродного атома) и одна первичная гидроксильная группа (у шестого атома углерода). Кроме этого, на невосстанавливающем конце молекулы находится одна вторичная гидроксильная группа и одна полуацетальная группа — на конце молекулы, обладающем восстановительными свойствами. Препараты, получаемые при окислении хитозана — химически неоднородные продукты. Если предположить, что процесс окисления заключается только в превращении гидроксильных групп в карбоксильные, то и в этом случае существует 23002 возможностей распределения образующихся функциональных групп в макромолекуле хитозана. Это астрономическая цифра[5].

Окисление хитозана является сложным процессом, и состав получаемых продуктов определяется двумя факторами. Во-первых, при окислении образуются не только карбонильные, но и другие функциональные группы. Это объясняется тем, что различные окислители (или один и тот же окислитель в разных условиях) неодинаково действуют на хитозан, причем во всех случаях не удается достигнуть строгой избирательности действия того или иного окислителя. Во-вторых, этот процесс часто сопровождается протеканием побочных реакций, чаще всего разрывом цепи. Имеется ряд неожиданных экспериментальных данных, относящихся к исследованию кинетики окисления и состава окисленного хитозана. В большинстве случаев при исследовании кинетики отмечается наличие деструкции в процессе окисления. Этот вопрос подробно исследован Мак-Барнеем. В то время как при изучении гидролитической деструкции могут быть применены обычные методы анализа, кинетика начальной стадии окисления и состав получаемых продуктов не могут быть описаны достаточно просто, так как различные окислители действуют на хитозан по-разному. Хотя строго избирательное окисление наблюдается крайне редко, тем не менее в ряде случаев при окислении хитозана разными окислителями в строго регулируемых условиях удается получить один тип окисленного продукта[6].

Существует, например, несколько реагентов типа гипоиодита и подкисленного раствора хлорита, которые не взаимодействуют (или взаимодействуют незначительно) со спиртовыми гидроксильными группами, а только окисляют концевые полуацетальные гидроксильные группы до карбоксильных. Пирановое кольцо раскрывается и образуется остаток глюконовой кислоты или ее лактона. Это окисление протекает настолько избирательно, что служит методом количественного определения содержания концевых гидроксильных или альдегидных групп в молекуле хитозана [7].

Другим примером относительно избирательного окисления хитозана является действие окислов азота, в частности двуокиси азота. В этом случае происходит преимущественное, хотя и не исключительное, окисление первичной спиртовой группы. Окисленный продукт содержит главным образом карбоксильные группы, однако образуется также некоторое количество альдегидных и нитратных групп. Нитрат хитозана образуется, очевидно, в качестве промежуточного продукта при окислении хитозана двуокисью азота. Окисление может быть осуществлено действием газообразной двуокиси азота или раствором N204 в четыреххлористом углероде. Реакция протекает при комнатной температуре[8].