Камеры хлопьеобразования (стр. 1 из 2)

КАМЕРЫ ХЛОПЬЕОБРАЗОВАНИЯ


Место камер хлопьеобразования в технологической схеме, их классификация

Процесс конвективной коагуляции во времени состоит из двух этапов. Ход процесса перекинетической коагуляции определяется интенсивностью теплового броуновского движения. В момент ввода и распределения раствора коагулянта в воде ионы алюминия или железа начинают взаимодействовать с гидроксильными ионами и спустя некоторое время появляется опалесценция и вода мутнеет от формирования огромного количества первичных мельчайших хлопьев. Под действием броуновского движения хлопья контактируют друг с другом и укрупняются, а их число в единице объема уменьшается. Наступает момент, когда энергия броуновского движения недостаточно для перемещения первичных агрегатов с целью их дальнейшей агломерации. На этом заканчивается перекинетическая фаза коагуляции и наступает ортокинетическая, для успешного протекания которой необходимо обеспечить дальнейшее контактирование уже сформировавшихся агрегатов.

Таким образом, камеры хлопьеобразования предназначены для создания благоприятных условий на завершающей второй стадии процесса коагуляции — хлопьеобразования, чему способствует плавное перемешивание потока. На размеры образующихся хлопьев в процессе медленного перемешивания обрабатываемой воды влияет его интенсивность и продолжительность, солевой состав воды, природа примесей (коллоидные или диспергированные), а также силы адгезии, удерживающие частицы примесей связанными между собой. Укрупнение образующихся в процессе гидролиза коагулянта хлопьев происходит постепенно в течение некоторого времени, варьируемого согласно СНиПа в пределах 6 ... 30 мин и более. Первоначально протекает стадия скрытой коагуляции, характеризующаяся формированием первичных мельчайших хлопьев, которые затем укрупняются и образуют крупные видимые агрегаты. При этом структура образующихся хлопьев гидроксида железа значительно прочнее и они имеют большую плотность, чем гидроксид алюминия. На структурообразование хлопьев оказывает влияние солевой состав воды. Так, возрастание концентрации гидрокарбонатов и хлоридов повышает прочность формирующихся хлопьев и, наоборот, увеличение содержания сульфатов понижает ее.

Как показали результаты исследований, выполненных в МГСУ (Г. И. Николадзе, А. Мирзаев и др.) и в НИИ КВОВ АКХ (Г. Н. Луценко и др.), существенное влияние на процесс хлопьеобразования оказывают интенсивность и продолжительность перемешивания обрабатываемой воды в камерах хлопьеобразования. При этом основополагающей является интенсивность перемешивания G = 50 ... 60 с-1, влияние продолжительности процесса проявляется в меньшей степени.

Ниже приводятся формулы для определения градиента скорости в камерах хлопьеобразования разных типов:

Перегородчатая

Вихревая и водоворотная

флокулятор (механическая)

в аэрофлокуляторе

где n— число перегородок; υ1 и υ2 — соответственно скорости движения воды в коридоре камеры и на повороте, м/с; Q— расход коагулируемой воды, м3/с; р — плотность воды, кг/м3; V — объем камеры, м3; т]— динамическая вязкость воды, Пас; о — скорость входа воды в камеру из подводящего трубопровода, м/с; т — частота вращения мешалки, с-1; N — начальная мощность, затрачиваемая на вращение, Вт; q— расход воздуха, м3/с; ро — атмосферное давление, Па; Л — высота слоя воды над воздухораспределительной системой.

Интенсивность перемешивания воды в камерах хлопьеобразования не должна быть слишком большой, чтобы не разрушить сформировавшиеся хлопья. Необходимая интенсивность перемешивания воды достигается путем изменения скорости ее движения или частоты вращения мешалки во флокуляторах, а оптимальная продолжительность процесса обеспечивается надлежащим объемом сооружения.

Из практики известно, что скорость хлопьеобразования понижается при низкой температуре обрабатываемой воды, а размер и структура образующихся при этом хлопьев неудовлетворительны. Это негативное явление удается локализовать путем увеличения интенсивности и продолжительности перемешивания.

При обработке маломутных цветных вод ускорения хлопьеобразования можно достичь искусственным замутнением обрабатываемой воды, вводя в нее осадок из отстойников или суспензию глины, частицы которых являются центром агрегации. Такой же результат дает применение флокуляторов в сочетании с флокулянтами. Из сказанного становится очевидной роль и назначение камер хлопьеобразования.


Рис. 6.1. Камеры хлопьеобразования вихревого (а) и зашламленного (б) типа, встроенные в горизонтальный отстойник.

1 — отвод осветленной и подача исходной воды; 2 — водосборный карман; 3 — лотки децентрализованного сбора осветленной воды; 4 — тонкослойные модули; 5 — зона осветления воды; 6 — струенаправляющая перегородка; 7 — лотки для сбора и отведения воды из камеры; 8 — камера хлопьеобразования; 10 — перфорированные водораспределительные трубы; 11 — удаление осадка из отстойника; 12 — короба для сбора и удаления осадка из отстойника; 13 — затопленный водослив; отделяющий камеру от отстойника.

В современной практике камеры хлопьеобразования встраивают в отстойники или располагают вплотную к ним с тем, чтобы избежать разрушения хлопьев при передаче воды из камеры в отстойник. Согласно СНиП скорость движения воды из камеры в отстойник не должна превышать 0,1 м/с для мутных вод и 0,05 м/с для цветных.

По принципу действия камеры хлопьеобразования подразделяют на гидравлические, механические (флокуляторы) и аэро- флокуляторы. Из камер гидравлического типа на практике отдают предпочтение вихревым (рис. 6.1,а) я зашламленного типа (рис. 6.1,б), водоворотным (рис. 6.2,а) и контактным (рис. 6.2,б), перегородчатым с горизонтальным или вертикальным движением воды, камерам с рециркуляцией осадков (рис. 6.3). При числе камер хлопьеобразования менее шести следует принимать одну резервную.

Рис. 6.2. Водоворотная (а) и контактная (б) камеры хлопьеобразования, встроенные в вертикальный отстойник.

1,5 — подача исходной и отвод осветленной воды; 2 и 3 — кольцевой и радиальные водосборные лотки; 4 — водоворотная камера; 6 — зона осветления воды; 7 — гаситель; 8 — зона накопления и уплотнения осадка; 9 — конусный отражатель; 10 — удаление осадка; 11 — контактная загрузка из вспененного полистирола; 12 —• сетка; 13 — контактная камера

хлопьеобразование конвективный коагуляция

Камеры хлопьеобразования гидравлического типа

При выборе типа камеры хлопьеобразования следует руководствоваться производительностью водоочистного комплекса, качеством исходной воды и конструкцией отстойника.

Перегородчатая камера хлопьеобразования (применяют с горизонтальными отстойниками) представляет собой прямоугольный железобетонный резервуар с перегородками, образующими 9 ... 11 коридоров шириной не менее 0,7 м, через которые последовательно проходит вода со скоростью 0,2 ... 0,3 м/с в начале камеры и 0,05 ... 0,1 м/с в конце за счет увеличения ширины коридоров. Подключая к работе то или иное число коридоров, можно регулировать продолжительность пребывания обрабатываемой воды в камере в зависимости от ее качества. Дно коридоров камеры выполняют с продольным уклоном 0,02 ... 0,03 для удаления осадка при чистке. Среднюю глубину камеры принимают 2 ... 2,5 м, продолжительность пребывания воды в камере 20 ...40 мин (минимальное время —для мутных вод, максимальное — для цветных с пониженной температурой).

В перегородчатых (одно- или двухэтажных) камерах, вплотную примыкающих к горизонтальным отстойникам, перемешивание воды достигается многократным изменением направления ее движения в вертикальной или горизонтальной плоскости. Перегородчатые камеры применяют на крупных водоочистных комплексах: с вертикальным движением воды до 60 тыс. м3/сут; с горизонтальным — при большей подаче.

Расчет камеры перегородчатого типа заключается в нахождении ее объема, размеров в плане, числа и ширины коридоров и общей потери напора в сооружении.

Вихревая камера хлопьеобразования (рис. 6.1, а), предложенная Е. Н.Тетеркиным, выполнена в виде железобетонного конического или пирамидального резервуара (с углом конусности 50... 70°), обращенного вершиной вниз. Обычно ее встраивают в горизонтальный отстойник или располагают вплотную к нему. Принцип работы камеры заключается в том, что перемешивание воды происходит при ее движении снизу вверх вследствие значительного уменьшения скорости движения (от 0,7 ... 1,2 до 0,004 ... 0,005 м/с) в результате резкого увеличения площади поперечного сечения. Время пребывания воды в камере составляет от 6 (для мутных вод) до 12 мин (для цветных вод). Передачу воды из камеры в отстойник следует осуществлять при скорости ее движения в сборных лотках или трубах, а также в их отверстиях не более 0,05 м/с для цветных вод и 0,1 м/с — для мутных.

При устройстве желоба необходимо предусматривать треугольные водосливы или затопленные отверстия для равномерного сбора воды. В современных конструкциях вихревых камер хлопьеобразования предусматривают встраивание тонкослойных модулей, что повышает эффект хлопьеобразования и улучшает гидравлические условия их работы.

Камера хлопьеобразования зашламленного типа (рис. 6.1,б), предложенная И. М. Миркисом, с вертикальными перегородками применяется для вод с мутностью до 1500 мг/л. Ее размещают в начале коридора отстойника или вплотную с ним и выполняют в виде железобетонного пирамидального резервуара (с углом конусности порядка 45°). В основаниях перевернутых пирамид размещают напорные перфорированные водораспределительные трубы, расстояние между которыми в осях — 2 м, от стенки камеры— 1 и. Отверстия трубы диаметром не менее 25 мм направлены вниз под углом 45°, их суммарная площадь должна составлять 30 ... 40% от площади сечения распределительной трубы. Скорость движения воды в распределительных трубах принимают 0,5 ... 0,6 м/с. Для соблюдения постоянства скорости движения воды распределительные трубы рекомендуется выполнять телескопическими с косыми переходами.


Copyright © MirZnanii.com 2015-2018. All rigths reserved.