Смекни!
smekni.com

Реакційна здатність неорганічних сполук (стр. 1 из 3)

Зміст

Вступ

1.Теоретична частина

1.1Електронна будова атома

1.2Двоїста природа електрона. Квантові числа

1.3Валентність і ступінь окислення

1.4Енергетика хімічних реакцій

1.5Хімічна кінетика і швидкість хімічної реакції

2.Практична частина

2.1Завдання 1

2.2Завдання 2

2.3Завдання 3

Література

Додатки


Вступ

Контрольна робота з дисципліни "Реакційна здатність неорганічних сполук".

Хімія – це наука про елементи і сполуки, які вони утворюють при взаємодії, наука про будову, властивості і хімічні перетворення цих сполук.

Реакційна здатність сполук характеризує їх схильність до хімічних перетворень і визначає їх, поведінку в заданих умовах. В першу чергу реакційна здатність сполук залежить від атомного складу й електронної будови речовини. Визначить принципову можливість мимовільного протікання (або направленість) хімічного перетворення, а також вихід цільового продукту у конкретних умовах його проведення – це можливість термодинамічного підходу для опису хімічного процесу. Дослідження закономірностей хімічних процесів у часі, тобто їх швидкості в залежності від ряда факторів (температури, концентрації та ін.) – це можливості кінетичного підходу. Таким чином, у даному курсі реакційна здатність неорганічної речовини розглядається як триєдиний (електронний, термодинамічний і кінетичний) фактор її хімічного перетворення.

Мета і задачі контрольної роботи:

- вивчення основних закономірностей хімічних процесів;

- пояснення на їх основі взаємозв`язку фізичних та хімічних явищ;

- набуття навичок фізико-хімічних розрахунків.


1.Теоретична частина

1.1Електронна будова атома

Для глибокого розуміння хімічних процесів та їх правильного опису необхідно знання будови атомів хімічних елементів.

Електронну структуру атома розглядають на основі квантово-механічної моделі й основних положень квантової механіки.

1.2Двоїста природа електрона. Квантові числа

Властивості мікрочастинок, до яких належать і електрони, такі, що іноді поводять себе як дрібні частки, а іноді - як хвиля, що може при русі обтинати перешкоди, інтерферирувати і т.п. Для того щоб наочно представити таке поняття, як електронна будова атома, використовують два граничних підходи.

У першому вважають електрон часткою з дуже малим розміром (менш 10-13м, порівнянним з розміром атомного ядра), однак, що рухається навколо ядра так, що його точне положення в даний момент часу визначити не можна - можна говорити тільки про імовірність перебування електрона в даній точці, з координатами (x, y, z).

В другому підході електрони в атомі розглядаються як такі, що не мають точно обкреслених границь хмари, у яких розподілена електронна щільність (делокалізована маса й заряд електрона). Іншими словами, замість траєкторії руху електрона по визначеній орбіті навколо ядра – розглядають атомну орбіталь, тобто простір навколо ядра атома, де найбільш ймовірне перебування електрона.

Розподіл електронної щільності в атомі можна кількісно знайти з рішення рівняння: НΨ(х, у, z) = ЕΨ(х, у, z), яке називається стаціонарним рівнянням Шредінгера.

Н= [-(ħ2/2m)

2 + V(x,y,z)] – оператор Гамильтона або оператор повної енергії системи, що передає припустимі для даної системи значення енергії - Еi.

З рівняння випливає, що стан електрона в атомі описується функцією Ψ(х, у, z), названою хвильовою функцією. Квадрат хвильової функції, |Ψ|2, пропорційний імовірності виявлення електрона в точці (х, у, z) або електронній щільності. Усі властивості електронів в атомі цілком визначаються набором із чотирьох чисел, які називаються квантовими числами. Три числа - цілі, четверте - напівціле. Електронові в атомі можна приписати набір трьох цілих чисел, що однозначно задає конкретне вираження для просторової хвильової функції Ψ(х, у, z)=ψ(n, l, ml). У хімії звичайно, використовують не поняття хвильової функції, а поняття атомної орбіталі ψ(n, l, ml), що визначає енергію електрона в атомі (через головне квантове число - n), величину орбітального моменту кількості руху (через орбітальне квантове число – l) і напрямок орбітального імпульсу (через магнітне квантове число - ml). Наявність трьох квантових чисел пов'язано з тривимірністю простору (х, у, z), але електрон володіє ще спіном, властивістю, що не має аналога для макрочасток. Спін, або напрямок власного моменту кількості руху (ms), образно зв'язують з обертанням навколо своєї осі. Спін не зв'язаний з рухом електрона в просторі, тому що рівняння Шредінгера не залежить від спіна і його треба враховувати додатково.

Електронна конфігурація атома.

Заповнення атомних орбіталей електронами відбувається відповідно до основного закону природи - принципу найменшої енергії (з урахуванням принципу Паулі, правила Гунда, правила Клечковського). Сукупність заповнених атомних орбіталей характеризує електронну конфігурацію атома. При цьому стан кожного електрона строго визначається четвіркою квантових чисел. Електрони найближчих до ядра шарів – міцно зв'язані з ядром і не приймають участі в хімічних перетвореннях. Це внутрішні електрони. Хімічні властивості атомів залежать від зовнішніх – валентних електронів.

1.3Валентність і ступінь окислення

Валентність атома того або іншого елемента в хімічній сполуці визначається числом загальних електронних пар (числом ковалентних зв'язків і графічно відповідає числу "рисок" між атомами в структурній формулі з'єднання). Наприклад, атом нітрогену має на зовнішньому валентному рівні три неспарених електрони:

атомний електрон валентність квантовий

↑↓

2s23 і валентність нітрогену дорівнює трьом: у молекулах нітрогену N ≡ N, гідразину H2N-NH2, аміаку NH3.

Ступінь окислення - це умовний електричний заряд, який одержав би даний атом, якби кожна загальна пара електронів, що зв'язує його з іншими атомами, цілком перемістилася до більш електронегативного атома. Іншими словами, ступінь окислення - це умовний заряд атома в молекулі, обчислений, виходячи з припущення, що молекула складається тільки з іонів. Наприклад, у розглянутих вище з'єднаннях нітроген стосовно гідрогену поляризований негативно, тому що відносні електронегативності нітрогену й гідрогену відповідно рівні 3,1 і 2,1 (єднальна пара електронів цілком перемістилася до нітрогену).

Таким чином, ступінь окислення нітрогену в молекулах N2, N2H4, NH3 дорівнює відповідно 0, -II, -III. Відзначимо, що ступінь окислення прийнято позначати римськими цифрами, що підкреслює формальний, умовний характер цієї величини - на відміну від реальної величини заряду іонів, для позначення якої використовують арабські цифри, наприклад, Са2+, Аl3+ .

Для того, переконатися в розходженні понять "валентність" і "ступінь окислення", визначимо, наприклад, ступінь окислення атома вуглецю в молекулах метану, метилового спирту, формальдегіду, мурашиної кислоти і диоксиду вуглецю.

Таким чином, ступінь окислення є більш конкретним поняттям, чим валентність; дійсно, значення ступеня окислення атома вуглецю у вищенаведених з'єднаннях показують, що вуглець знаходиться в них не в однаковому стані (у той час як, з погляду валентності, ці розходження не розкриваються, тому що вуглець у всіх своїх з'єднаннях чотиривалентний).

Окислювально-відновні реакції - це реакції, що протікають із зміною ступеня окислення атомів, що входять до складу молекул реагуючих речовин; в окисників вона знижується, а у відновників підвищується.

1.4Енергетика хімічних реакцій

У 1840 р. російський вчений Г.І. Гесс сформулював закон, що є основним законом термохімії: "Сумарний тепловий ефект ряду послідовних хімічних реакцій дорівнює сумарному тепловому ефектові будь-якого іншого ряду реакцій, якщо вихідні речовини і їхні стани в обох випадках однакові і якщо однакові також кінцеві продукти і їхні стани". Іншими словами, тепловий ефект реакції залежить тільки від початкового й кінцевого стану системи і не залежить від шляху переходу з початкового стану в кінцевий.

Закон Гесса є цілком строгим тільки для процесів, що відбуваються при постійному тиску або при постійному обсязі. Для цих процесів він може розглядатися як частна форма вираження закону збереження енергії стосовно до хімічних реакцій. Велике практичне значення для розрахунку теплових ефектів реакцій мають наслідки із закону Гесса.

Перший наслідок.

Тепловий ефект реакції дорівнює сумі ентальпій утворення продуктів з вирахування суми ентальпій утворення вихідних речовин з урахуванням стехіометричних коефіцієнтів. Як вихідні речовини, так і продукти реакції можна синтезувати з простих речовин у стандартних умовах, тому зміну ентальпії реакції ΔrН0 знаходимо по рівнянню:

ΔrНo = ∑ν’i∙ ΔН˚утв(прод) - ∑ νi∙ ΔН˚утв(вих.р.) ,

де ∑ν’i∙ΔН˚утв(прод) - сума стандартних ентальпій утворення продуктів реакції з урахуванням стехіометричних коефіцієнтів (ν’i);

∑νi∙ΔН˚утв(вих.р.) – сума стандартних ентальпій утворення вихідних речовин з урахуванням стехіометричних коефіцієнтів (νi);

Справедливо також ствердження: тепловий ефект реакції дорівнює сумі енергій зв'язків молекул вихідних речовин за винятком суми енергій зв'язків продуктів з урахуванням стехіометричних коефіцієнтів.

Значення теплового ефекту реакції дозволяє оцінити кількість тепла, що поглинається або виділяється в ході хімічної реакції, але не дозволяє відповісти на запитання про можливість або неможливість протікання реакції в даних умовах.