Смекни!
smekni.com

Понятие и биологическая роль ферментов (стр. 1 из 3)

Содержания

Введение

1. Ферменты

1.1 Термин «ферменты», биологическая роль ферментов

1.2 Особенности строения простых и сложных ферментов. Преимущества перед химическими катализаторами

1.3 Методы выделение ферментов

1.4 Классификация иноменклатура ферментов по типу катализируемой реакции

1.5 Область применения

2. Биокатализ

2.1 Принцип действия ферментов

2.2 Факторы, влияющие на реакции ферментации

3. Особенности биомиметики

Заключение

Список использованных источников

фермент катализатор реакция


Введение

Я выбрала тему «Ферменты. Биокатализ. Возможности биомиметики», потому что в последнее время в качестве лекарственных средств стали широко применять препараты, оказывающие направленное влияние на ферментные процессы организма. Как известно в нашем организме действует много ферментов, которые способствуют осуществлению обменных процессов (дыхание, пищеварение, мышечное сокращение, фотосинтез), которые и определяют сам процесс жизни. Поэтому препараты стали широко применяться при лечении заболеваний, сопровождающихся гнойно-некротическими процессами, при тромбозах и тромбоэмболиях, нарушениях процессов пищеварения. Ферментные препараты стали находить также применение при лечении онкологических заболеваний.

Ферменты играют немаловажную роль и в проведении многих технологических процессов. Ферменты высокого качества позволяют улучшить технологию, сократить затраты и даже получить новые продукты.

В настоящее время ферменты применяются более чем в 25 отраслях промышленности: это и пищевая промышленность, и фармацевтическая, целлюлозно-бумажная, лёгкая, а так же в сельском хозяйстве.

Целью моего реферата является: подробное исследование понятий фермента и ферментативного катализа (биокатализа).

В этой связи мне стало интересно узнать историю появления первых ферментов, особенности строения, их свойства, классификацию, принцип действия, методы выделения ферментов.


1. Ферменты

1.1 Термин «ферменты», биологическая роль ферментов

В течение всей своей истории существования человек пользовался ферментами, зачастую не подразумевая об этом.

Термин фермент предложен в XVII веке химиком Ван Гельмонтом при обсуждении механизмов пищеварения. В кон. ХVIII — нач. XIX вв. уже было известно, что мясо переваривается желудочным соком, а крахмал превращается в сахар под действием слюны. Однако механизм этих явлений был неизвестен. В XIX в. Луи Пастер, изучая превращение углеводов в этиловый спирт под действием дрожжей, пришел к выводу, что этот процесс (брожение) катализируется некой жизненной силой, находящейся в дрожжевых клетках. Термин энзим (от греч. ἐν- — в- и ζύμη — дрожжи, закваска) был предложен в 1876 году.

Первый кристаллический фермент (уреаза) выделен американским биохимиком Д. Самнером в 1926 г.

Итак, что же такое ферменты? Ферменты (от лат. fermentum - брожение, закваска) или энзимы - органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям.

На сегодняшний день известно свыше 3000 ферментов. Все они обладают рядом специфических свойств, отличающих их от неорганических катализаторов. Только в человеческом организме ежесекундно происходят тысячи ферментативных реакций. Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Нужно также отметить, что вся живая природа существует исключительно благодаря биокатализу. Недаром великий русский физиолог, нобелевский лауреат И.П. Павлов назвал ферменты носителями жизни.


1.2 Особенности строения простых и сложных ферментов. Преимущества перед химическими катализаторами

По строению ферменты могут быть однокомпонентными, простыми белками, и двухкомпонентными, сложными белками. Во втором случае в составе фермента обнаруживается не только белковый компонент – апофермент (apoenzyme), но и добавочная группа небелковой природы – кофермент (coenzyme). Последние вещества, в отличие от белкового компонента фермента (апофермента), имеют сравнительно небольшую молекулярную массу и, как правило, термостабильны.

Химическая природа важнейших коферментов была выяснена в 30-е годы нашего столетия благодаря трудам О. Варбурга, Р. Куна, П. Каррера и др. Оказалось, что роль коферментов в двухкомпонентных ферментах играют большинство витаминов (Е, К, Q, В1, В2, В6 В12, С, Н и др.) или соединений, построенных с участием витаминов, именно поэтому они должны поступать в организм с пищей. Многие ферменты с большой молекулярной массой проявляют каталитическую активность только в присутствии специфических низкомолекулярных веществ, называемых коферментами (или кофакторами).

Характерной особенностью двухкомпонентных ферментов является то, что ни белковая часть, ни добавочная группа в отдельности не обладают заметной каталитической активностью. Только их комплекс проявляет ферментативные свойства. При этом белок резко повышает каталитическую активность добавочной группы, присущую ей в свободном состоянии в очень малой степени; добавочная же группа стабилизирует белковую часть и делает ее менее уязвимой к денатурирующим агентам.

Однокомпонентные ферменты представляют собой простые белки.У однокомпонентных ферментов, не имеющих добавочной группы, которая могла бы входить в непосредственный контакт с преобразуемым соединением. Эту функцию выполняет часть белковой молекулы, называемая каталитическим центром. Предполагают, что каталитический центр однокомпонентного фермента представляет собой уникальное сочетание нескольких аминокислотных остатков, располагающихся в определенной части белковой молекулы. Аминокислотные остатки, образующие каталитический центр однокомпонентного фермента, расположены в различных точках единой полипептидной цепи. Поэтому каталитический центр возникает в тот момент, когда белковая молекула приобретает присущую ей третичную структуру. Следовательно, изменение третичной структуры фермента под влиянием тех или иных факторов может привести к деформации каталитического центра и изменению ферментативной активности.

Кроме каталитического центра, образованного сочетанием аминокислотных радикалов или присоединением кофермента, у ферментов различают еще два центра: субстратный и аллостерический. Под субстратным центром понимают участок молекулы фермента, ответственный за присоединение вещества (субстрата), подвергающегося ферментативному превращению. Часто этот участок называют “якорной площадкой” фермента, где, как судно на якорь, становится субстрат. Понятие о каталитическом и субстратном центре не следует абсолютизировать. В реальных ферментах субстратный центр может совпадать (или перекрываться) с каталитическим центром. Более того, каталитический центр может окончательно формироваться в момент присоединения субстрата. Поэтому часто говорят об активном центре фермента, представляющем сочетание первого и второго.

Аллостерический центр представляет собой участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного (а иногда - и высокомолекулярного) вещества изменяется третичная структура белковой молекулы. Вследствие этого изменяется конфигурация активного центра, сопровождающаяся либо увеличением, либо снижением каталитической активности фермента.

Ферменты как биологические катализаторы имеют ряд особенностей, которые отличаются их от катализаторов неорганической природы:

· ферментативные реакции протекают в физиологически нормальных для живого организма условиях и не требуют жестких условий - повышенной температуры, высокой кислотности среды, избыточного давления;

· ферменты как катализаторы строго специфичны, они катализируют только определённые биохимические реакции, действуя лишь на определённый субстрат;

· ферментативные реакции в живых организмах идут последовательно, таким образом, что субстратом для каждого последующего фермента является конечный продукт предшествующий ему ферментативной реакции;

· скорость ферментативных реакций высока, но она зависит от определённых факторов. Ускоряют реакцию в 108-1020 раз. Ферментативные реакции идут со 100%-ным выходом и не дают побочным продуктов. Для выражения каталитической активности согласно рекомендациям Международного биохимического союза используется катал. Катал (кат) – это каталитическая активность, способная осуществить реакцию со скоростью, равной 1 моль в секунду;

· все ферменты являются белками. Молекулярная масса ферментов колеблется в широких пределах от 12*103 до 10*106 Да.

1.3 Методы выделения ферментов

Процесс выделения какого-либо белка начинается с переведения белков ткани в раствор. Для этого ткань (материал), из которой получают фермент, тщательно измельчают в гомогенизаторе в присутствии буферного раствора. Для лучшего разрушения клеток к материалу добавляют кварцевый песок, если материал растирают в ступке. В результате получают кашицу - гомогенат. Если не проводилось предварительное фракционирование органоидов клетки, гомогенат содержит обрывки клеток, ядра, хлоропласты и другие органоиды клеток, растворимые пигменты и белки.

При выделении ферментов из тканей живых организмов, в том числе растительных, необходимо соблюдать условия, не вызывающие денатурацию белка. Все работы проводят при пониженной температуре (40С) и при оптимальных для данного фермента значениях pH среды буферного раствора.

После перевода ферментов из ткани в растворенное состояние гомогенат подвергают центрифугированию для отделения нерастворимой части материала, а затем в отдельных фракциях экстрата-центрифугата выделяют следуемые ферменты.

Так как все ферменты являются белками, то для получения очищенных препаратов ферментов применяются те же способы выделения, что и при работе с белками.