Смекни!
smekni.com

Разработка энергосберегающей схемы разделения трехкомпонентной азеотропной смеси бензолциклогексан-гексан (стр. 13 из 13)

Казалось бы, что среди всех рассмотренных схем, образ Ф1.1. наиболее приближен к термодинамически обратимому процессу, и следовательно он должен обладать минимальными энергозатратами. Однако расчет показал, что наименьшими тепловыми нагрузками обладает схема V5.2. (Q∑кип = 0,3076 Гкал/час). Это можно объяснить тем, что рассмотренная нами смесь содержит значительно количество тяжелокипящего толуола, поэтому наиболее эффективной оказалась схема с предварительным отделением тяжелокипящего компонента от бинарной азеотропной составляющей.

6. Выводы.

· Для рассматриваемой системы уменьшение числа аппаратов, охваченных рециклом, приводит к значительному уменьшению суммарных энергозатрат в кипятильниках колонн на 4 - 58%. Это связано с меньшими затратами тепла в кубах колонн в соответствии с уменьшением количества разделяемого агента.

· В ряду схем образов первого заданного разделения наилучшими показателями обладает схема, имеющая минимальное число кипятильников (Ф 1.1). При этом экономия энергоресурсов по сравнению с праобразом П1 составляет 44,25%.

· Из трех возможных схем, состоящих из двух отборных колонн, схемы работающие по второму заданному разделению и разветвленная система обладают относительно небольшим отличием в энергозатратах (10,72%)

· В связи с наличием двух жидких фаз при ректификации в качестве пригодных для промышленной реализации могут быть использованы только по одному образу П2 и П3. Разница в энергозатратах между образами этих схем составляет 41,28% по отношению к друг другу и наименьшими энергозатратами характеризуется схема V 3.2, имеющая энергозатраты на 66% меньше, лучшего варианта из отборных колонн П2.

Список литературы

1. Тимофеев В.С., Серафимов Л.А «Принципы технологии основного органического и нефтехимического синтеза», Москва «Высшая школа» 2003 г, 536 с

2. Сулимов А. Д. «Производство ароматических углеводородов из нефтяного сырья», Москва, 1975 г.

3. Zhigang Lei, Chengyue Li, & Biaohua Chen. Extractive distillation: a review. Separation and purification reviews vol. 32, No.2, pp. 121-213, 2003

4. Гайле А.А., Сомов В.Е., Варшавский О.М. «Ароматические углеводороды: Выделение, применение, рынок»: Справочник. - СПб.: Химиздат, 2000г. 12с.

5. Гайле А.А., Сомов В.Е., Варшавский О.М., Семенов Л.В. «Сульфолан: свойства и применение в качестве селективного растворителя», Спб.: Химииздат, 1998г. 81 с.

6. Петлюк Ф. Б., Серафимов Л. А. Многокомпонентная ректификация: теория и расчет. М.:Химия, 1983.

7. Александров И. А. Ректификационные и абсорбционные аппараты. М.:Химия, 1978.

8. Общий курс процессов и аппаратов химической технологии. Книга 2. под ред. В. Г. Айнштейна. Москва. Химия,2000.

9. Айнштейн В.Г., Захаров М.К., Носов Г.А., Захаренко В.В., Зиновкина Т.В., Таран А.Л., Костаян А.Е. «Общий курс процессов и аппаратов химической технологии» т.2 Москва «Логос» «Высшая школа» 2003 г. 1758с.

10. Львов С.В. Некоторые вопросы ректификации бинарных и многокомпонентных смесей, изд. АНСССР, 1960 г, 163 с.

11. Серафимов Л. А., Мозжухин А.С., Науменкова Л. Б. Определение числа вариантов технологических схем ректификации n-компонентных зеотропных смесей, ТОХТ, т. 27, N3, с. 292-295,1993

12. Морачевский А.Г., Смирнова Н.А., Пиотровская Е.М. и др. “Термодинамика равновесия жидкость–пар”, под ред. Морачевского А.Г. – Л.: Изд–во Химия, 1989, с. 344.

13. Nitta T., Katayama T.//J. Chem. Eng. Jap. 1974, v.7 p 381-382]

14. Hiranuma N.// Ind. Eng. Chem. Fund. 1974 V.13.,p.219-222

15. Palmen D. A., Smith D. B.// Ind. Eng.Chem., Proc. Des. Dev. 1972. V.1. p 114-119.