Смекни!
smekni.com

Создание эффективной химико-технологической схемы ХТС производства алюминия (стр. 1 из 3)

Создание эффективной химико-технологической системы

производства алюминия


ВВЕДЕНИЕ

Впервые металлический алюминий был получен в 1825 году Эрстедом химическим методом восстановлением хлорида алюминия амальгамой калия. В 1856 году этот метод был усовершенствован, и алюминий стали получать восстановлением двойной соли

металлическим натрием. Н.Н. Бекетов в 1865 году предложил метод получения алюминия восстановлением криолита
магнием. Производство алюминия химическим методом просуществовало до 1890 года, и за 35 лет его использования было получено всего около 200 тонн алюминия.

В 1886 году Н. Эру во Франции и Ч. Холи в США разработали метод производства алюминия электролизом расплава глинозема в криолите, который до настоящего времени является единственным методом промышленного производства алюминия.

Теоретической основой производства явились исследования отечественных ученых (конец XIX – начало XX вв.) П.П. Федотьев изучил и разработал теоретические основы электролиза системы "глинозем – криолит", в том числе растворимость алюминия в электролите, анодный эффект и другие условия процесса. В 1882 – 1892 гг. К.И. Байер разработал "мокрый" метод получения глинозема выщелачиванием руд, а в 1895 году Д. Н. Пеняков предложил метод производства глинозема из бокситов спеканием с сульфатом натрия в присутствии угля. А.И. Кузнецов и Е.И. Жуковский разработали в 1915 году способ получения глинозема методом восстановительной плавки низкосортных алюминиевых руд.

Алюминий относится к числу важнейших легких цветных металлов. По масштабам производства и потребления он занимает второе место среди всех металлов (после железа) и первое место среди цветных металлов. Поэтому в цветной металлургии производство этого металла выделено в отдельную специализированную подотрасль "Алюминиевая промышленность", включающую добычу сырья для алюминиевой промышленности, производство алюминия, глинозема и фтористых солей.

Алюминий – твердый серебристо-серый металл. Легко поддается ковке, прокатке, волочению и резанию. Пластичность алюминия возрастает с повышением его чистоты. Плотность алюминия

, температура плавления 660,2°С, температура кипения 2520°С. В расплавленном состоянии жидкотекуч и легко поддается литью.

Алюминий имеет высокие тепло- и электропроводность, которые зависят от его чистоты. Для алюминия высокой чистоты электропроводность составляет 65% от электропроводности меди.

Алюминий химически активен, легко окисляется кислородом воздуха, образуя прочную поверхностную пленку оксида

, что обуславливает его высокую коррозионную стойкость. В мелкораздробленном состоянии при нагревании на воздухе воспламеняет и сгорает. Алюминий реагирует с серой и галогенами. При нагревании образует с углеродом карбид
и с азотом нитрид
. Как амфотерный металл алюминий растворяется в сильных кислотах и щелочах. Нормальный электродный потенциал алюминия равен 1,66 В при рН< 7 и 3,25 при рН>7.

Вследствие комплекса ценных свойств (малая плотность, пластичность, высокие тепло- и электропроводность, нетоксичность, немагнитность, коррозионная стойкость в атмосфере), а также недефицитности сырья и относительно низкой стоимости. Алюминий в чистом виде и в сплавах широко применяется в различных отраслях техники и народного хозяйства.

Алюминий высокой степени чистоты используют в ядерной энергетике, полупроводниковой электронике, радиолокации, для изготовления отражающих поверхностей рефлекторов и зеркал. В металлургической промышленности алюминий применяется в качестве восстановителя при получении ряда металлов, раскисления стали, для сварки деталей.

Алюминий используют главным образом для получения алюминиевых сплавов. Покрытия из алюминия наносят на стальные изделия для повышения их коррозионной стойкости.

Алюминий – в виде порошка и гранул – раскислитель чугуна и стали, восстановитель оксидов при получении металлов и сплавов методом алюмотермии, компонент твердых ракетных топлив, пиротехнических составов. Алюминиевая пудра и паста – пигменты лакокрасочных материалов; пудра используется также как газообразователь в производстве ячеистых бетонов.

В строительстве и транспортном машиностроении расходуется приблизительно по 24% чистого алюминия и его сплавов, в производстве упаковочных материалов и консервных банок – около 17%, в электротехнике – около 10%, в производстве потребительских товаров – около 8%.


1. ОБОСНОВАНИЕ СОЗДАНИЯ ЭФФЕКТИВНОЙ ХТС

1.1 СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЯ

Алюминий входит в состав многих металлов, однако в качестве алюминиевых руд используются только бокситы, нефелины, алуниты и каолины. Они различаются составом и концентрацией оксида алюминия. Важнейшей алюминиевой рудой являются бокситы, содержащие гидратированный оксид алюминия

. В зависимости от степени гидратации алюминиевый компонент в бокситах может находиться в форме диаспора
(или
) или в форме гидроаргелита
(или
). Помимо оксида алюминия в состав бокситов входит оксид кремния и различные соединения железа, кальция и магния. Основная характеристика бокситов, от которой зависит выбор метода их переработки – отношение содержания в них оксида алюминия к содержанию оксида кремния
. Для бокситов, используемых в алюминиевой промышленности, модуль должен быть не ниже 2,6; для бокситов среднего качества он составляет 5-7, чему соответствует содержание оксида алюминия 46-48%.

Нефелины представляют собой сложную тройную соль состава

и входят как составная часть в апатит-нефелиновую руду, содержащую кроме нефелина апатит
. Для производства алюминия используют нефелиновый конденсат с содержанием оксида алюминия 20-30%.

Алуниты представляют двойную основную сернокислую соль алюминия и калия состава

. Содержание оксида алюминия в алунитах не превышает 20%.

1.2 ОБЩАЯ СХЕМА ПРОИЗВОДСТВА АЛЮМИНИЯ

Технология получения металлического алюминия из руд очень сложна и состоит из четырех производств, связанных между собой технологической цепочкой и производными продуктами. Она включает:

- производство глинозема;

- производство фтористых солей и криолита;

- производство угольных изделий (электродов и блоков футеровки);

- производство электролитического алюминия.

Основными производствами, составляющими технологическую цепочку

Руда Глинозем Алюминий,

являются производства глинозема и алюминия. Территориально они обычно разделены. Вследствие высокой энергоемкости процесса электролитического восстановления алюминия алюминиевые заводы располагаются в районах с дешевой электроэнергией ГЭС. Производства глинозема, наоборот, базируются в местах добычи алюминиевых руд с тем, чтобы сохранить расходы на перевозку сырья.

Производство фтористых солей и криолита ставит целью получение растворителя для глинозема и добавок, снижающих температуру плавления электролита.

Организация отдельного производства угольных изделий вызвана тем, что в процессе электролиза угольные аноды и футеровка электролизеров расходуются и требуют непрерывного пополнения.


Рис. 4.1. Принципиальная схема производства алюминия.

1.3 ПРОИЗВОДСТВО ГЛИНОЗЕМА

Исходный материал для электролитического производства алюминия – это чистый оксид алюминия – глинозем. Для выделения глинозема из алюминиевых руд его переводят в растворимую соль (алюминат натрия), которую отделяют от остальных компонентов руды, осаждают из ее раствора гидроксид алюминия и кальцинацией последнего получают глинозем.

Метод выделения глинозема из руды зависит от ее состава. Эти методы подразделяются на химико-термические (пирометаллургические), кислотные и щелочные (гидрометаллургические). К пирометаллургическим методам относится метод спекания; к гидрометаллургическим методам – щелочной метод Байера.

МЕТОД БАЙЕРА (мокрый метод, метод выщелачивания) является наиболее распространенным методом производства глинозема. В основе метода лежит обратимый процесс взаимодействия гидратированного оксида алюминия с водным раствором гидроксида натрия с образованием алюмината натрия. Метод применяется для выделения глинозема из бокситов с малым (менее 5%) содержанием оксида кремния. При большем содержании метод становится экономически невыгодным вследствие высокого расхода дорогой щелочи на взаимодействие с оксидом кремния.