Смекни!
smekni.com

Ионообменная хроматография 3 (стр. 1 из 2)

Введение

Ионообменная хроматография – метод разделения, анализа и физико-химического исследования веществ, основанный на различии констант ионообменного равновесия между неподвижной фазой и компонентами разделяемой смеси. Применяется в основном при неорганическом анализе. Этот широко распространенный в настоящее время метод был разработан в 1947 году, когда Т.Б. Гапон, Е.Н. Гапон и Ф.М. Шемякин впервые осуществили хроматографическое разделение смеси ионов в растворе, которое было объяснено ими обменом ионов сорбентов на ионы из раствора

Ионообменная хроматография, являющаяся разновидностью жидкостной хроматографии, основана на эквивалентном обмене ионов раствора на ионы твердой фазы.

Неподвижной фазой в ионообменной хроматографии являются ионообменники: катиониты (слабо- и сильнокислотные) и аниониты (слабо- и сильноосновные).

Основные хроматографические разделения с применением ионообменников проводят в водных растворах, смешанных растворителях (вода — метанол) или в водных буферных растворах.

Ионообменная хроматография широко используется для решения многих биохимических проблем в научных исследованиях.

Для практических целей ионообменную хроматографию наиболее широко используют для анализа аминокислот. Особенно широкую популярность ионообменная хроматография аминокислот получила с появлением аминокислотных анализаторов, позволяющих автоматизировать почти все стадии анализа за исключением подготовки пробы.

Основы метода

В ионообменной хроматографии разделение компонентов смеси достигается за счет обратимого взаимодействия ионизирующихся веществ с ионными группами сорбента. Сохранение электронейтральности сорбента обеспечивается наличием способных к ионному обмену противоионов, расположенных в непосредственной близости к поверхности. Ион введенного образца, взаимодействуя с фиксированным зарядом сорбента, обменивается с противоионом. вещества, имеющие разное сродство к фиксированным зарядам, разделяются на анионитах или на катеонитах. Аниониты имеют на поверхности положительно заряженные группы и сорбируют из подвижной фазы анионы. Катиониты соответственно содержат группы с отрицательным зарядом, взаимодействующие с катионами. Амфотерные (биполярные) иониты содержат в своей матрице и катионные и анионные обмениваемые группы. Эти иониты способны образовывать внутренние соли, которые диссоциируют в контакте с электролитами и связывают оба их компонента. Амфотерные иониты легко регенерируются водой.

В качестве ПФ в ионообменной хроматографии используют ионные растворы (водные растворы солей, кислот и оснований), т.е. системы растворителей, имеющих высокое значение диэлектрической проницаемости и способность ионизировать соединения. Обычно работают с буферными растворами, поддерживающими определенные значения рН.

При хроматографическом разделении ионы анализируемого вещества конкурируют с ионами, содержащимися в элюенте, стремясь вступать во взаимодействие с противоположно заряженными группами сорбента. Отсюда следует, что ионообменную хроматографию можно применять для разделения любых соединений, которые могут быть каким-либо образом ионизированы.

Ионообменная хроматография целесообразна при разделении высокополярных веществ, которые без перевода в производные не могут быть проанализированы методом ГЖХ. К таким соединениям относятся аминокислоты, пептиды, гетероциклические основания, углеводы. Ионообменную хроматографию широко применяют в медицине, биологии, биохимии, для контроля окружающей среды, при анализе содержания лекарств и их метаболитов в крови и моче, ядохимикатов в пищевом сырье, а также для разделения неорганических соединений, в том числе радиоизотопов, лантаноидов, актиноидов и др. Анализ биополимеров (белков, нуклеиновых кислот и др.), на который обычно затрачивали часы или дни, с помощью ионообменной хроматографии проводят за 20–40 мин с лучшим разделением. Применение ионообменной хроматографии в биологии позволило наблюдать за образцами непосредственно в биосредах, уменьшая возможность перегруппировки или изомеризации, что может привести к неправильной интерпретации конечного результата. Интересно использование данного метода для контроля изменений, происходящих с биологическими жидкостями. Применение пористых слабых анионообмеников на силикагелевой основе позволило разделить пептиды.

Механизм анионного обмена можно представить в виде уравнения:

X - + R+Y - ↔ Y - + R+X -

Аналогично уравнение для катионного обмена:

Х+ + R -Y+ ↔ Y+ + R -X+

В первом случае ион образца X - конкурирует с ионом подвижной фазы Y - за ионные центры R+ ионообменника, а во втором в конкуренцию с ионами подвижной фазы Y+ за ионные центры R - вступают катионы образца Х+.

Естественно, что ионы анализируемой пробы, слабо взаимодействующие с ионообменником, при этой конкуренции будут слабо удерживаться в колонке и первыми вымываться из нее и, наоборот, наиболее сильно удерживаемые ионы будут элюированы из колонки последними. Кроме ионных-ионных взаимодействий на поверхности сорбента возникают вторичные взаимодействия неионной природы за счет адсорбции или водородных связей сорбата с неионной частью матрицы или за счет ограниченной растворимости образца в подвижной фазе. Трудно добиться условий, при которых удерживание осуществляется только по ионообменному механизму. Поэтому при прогнозировании удерживания необходимо исходить не только из теоретических закономерностей ионообменной хроматографии, но и из эмпирических наблюдений. Разделение конкретных веществ зависит в первую очередь от выбора наиболее подходящего сорбента и подвижной фазы. В качестве неподвижных фаз в ионообменной хроматографии применяют ионообменные смолы и силикагели с привитыми ионогенными группами.

Применяемые в ВЭЖХ ионообменные смолы представляют собой в основном сополимеры стирола и дивинилбензола. Относительное содержание дивинилбензола, определяющее степень сшивки скелета ионита выражают в массовых процентах дивинилбензола в мономерной смеси. Обычно добавляют 8-12% последнего. Чем больше содержание дивинилбензола, тем больше жесткость и прочность полимера, выше емкость и, как правило, селективность и тем меньше набухаемость.

Хроматографические материалы, содержащие сульфатные или триалкиламмонийные группы, являются сильными катионнообменниками и сильными анионообменниками и называются соответственно SCX и SAX. Слабые катионообменники и анионообменники получают на основе ионов карбоксилата -СОО - или аммония -NH3+ соответственно. Существуют также жидкие органические ионообменники - несмешивающиеся с водой жидкости, физически нанесенные на пористые или поверхностно-пористые материалы. Жидкие анионообменники - высокомолекулярные амины или их соли, а катионообменники - эфиры фосфорной или фосфиновых кислот.

Для улучшения условий разделения в ионообменной хроматографии иногда получают лигандные комплексы ионов, изменяя при этом их полярность

Fe3+ + 4Сl - ↔ FeCl4-

и делят на анионообменном носителе анионы тетрахлоржелеза. Так как селективность смолы зависит от характера противоиона, часто необходимо изменить форму смолы. Противоионы связаны кулоновскими силами взаимного притяжения с ионообменными группами и экранируют их заряд. Это притяжение зависит от физической природы противоиона, размеров, формы, плотности электронных оболочек. Одни противоионы при равенстве концентраций могут замещать в ионообменнике другие. Ниже приведены ряды противоионов в порядке убывающей активности и уменьшения сродства к ионообменной смоле.

HSO4- > ClO3- > NO3- > Br - > CN - > НСО3- > СН3СОО - > OH - > F -

Ва2+ > Pb2+ > Са2+> Ni2+ > Cd2+ > Со2+ > Zn2+ > Mg2+ > Ag+ > Cs+ > Rb+ > K+ > NH42+ > Na+ > H+ > Li+

M4+ > M3+ > M2+ > M1+

Наиболее быстрый метод превращения анионита в форму, которая в ряду селективности стоит выше исходной, состоит в промывании ее четырехкратным объемом 1 М раствора соответствующей соли. Если для работы необходима форма слабее исходной, то ее сначала переводят в гидроксильную форму, промывая 20-кратным количествам 1 М раствора NaOH, а затем уже превращают в нужную форму. Катеониты переводят в требуемую форму промыванием 1 М раствором нитрата соответствующего металла.

При изменении ионной формы смолы или в присутствии органических растворителей, таких, как ацетонитрил, ТГФ, может изменяться и объем смолы. Если смола уменьшается в объеме, упаковка в колонке оседает и образуется мертвый объем наверху колонки. Это оседание сопровождается потерей эффективности. Если смола набухает и упаковка в колонке увеличивается, то возрастает сопротивление в колонке, что значительно уменьшает скорость потока и может даже привести к разрушению сорбента. Невысокая стабильность ионогенных материалов является одним из недостатков ионообменной хроматографии, причем анионообменники менее стабильны, чем катионообменники. Для увеличения срока службы колонок используют предколонки, а также регенерацию колонок сильным растворителем. Катиониты, например, регенерируют, обрабатывая 1 М азотной кислотой и продолжительно промывая той подвижной фазой, которая будет использована.

Ионообменники характеризуются степенью набухания и емкостью. Степенью набухания называют объем упакованного в колонну обменника (в мл), приходящийся на 1 г его в сухом виде, и имеет размерность мл/г. Максимальное количество ионов, которое может связать ионообменник, определяет его обменная емкость, которая совпадает с концентрацией ионогенных групп. Ёмкость выражается числам ммоль эквивалентов обмениваемого иона на 1 г сухого обменника (ммоль экв/г) или на 1 мл упакованного в колонну набухшего ионообменника (ммоль экв/мл) при значениях рН, соответствующих его полной ионизации. Для высокомолекулярных ионов или амфолитов, например белков, вводят понятие "эффективная" обменная емкость, которая зависит от размера молекулы амфолита, расстояния между ионогенными группами и степени доступности всего объема пористой матрицы обменника для этих молекул. Понятия емкости и эффективной емкости могут не совпадать. Иногда приходится снижать полезную емкость сорбента за счет изменения рН, увеличивая при этом его эффективную емкость. Катионообменные смолы имеют емкость около 4,4 ммоль экв/г, а анионообменные - 3,5-4 ммоль экв/г для гелеобразной структуры и 2,5 ммоль экв/г для пористой. Обменная емкость изменяется при изменении рН. При низких рН происходит нейтрализация катионита при добавлении протона: