Смекни!
smekni.com

Концентрирование карбамида (стр. 2 из 5)

Не сконденсировавшиеся в концевом конденсаторе поз. Е-705 пары и инерты отводятся для окончательной очистки в колонну абгазов поз. С-751. Колонна поз. С-751 орошается охлажденной сточной водой. Объемная подача на орошение охлажденной сточной воды регулируются клапаном регулятора FIC 2023. (Не менее 0,5 м3/ч). Инерты из абсорбера поз. С-751 через “свечу” поз. Х-701 выбрасываются в атмосферу. Конденсат соковых паров из конденсаторов поз. Е-702, Е-703, Е-704, Е-705 самотеком отводится в сборник ам. воды поз. V-703.

Все конденсаторы выпарки охлаждаются оборотной водой.

Для предотвращения кристаллизации карбамида на стенках сепараторов поз. S-401 и поз. S-402, а также в газоходе соковых паров от сепаратора поз. S-402, предусмотрена постоянная промывка ам. водой от насоса поз. Р-703А(В).

В эжекторах I-ой и II-ой ступени выпарки используется пар 0,32-0,45 МПа (PIC 2139).

2.2 Выбор выпарного аппарата

Разнообразные конструкции выпарных аппаратов, применяемых в промышленности, можно классифицировать по типу поверхности нагрева (паровые рубашки, змеевики, трубчатки различных видов) и по ее расположению в пространстве (аппараты с вертикальной, горизонтальной иногда наклонной греющей камерой), по роду теплоносителя (водяной пар, высокотемпературные теплоносители, электрический ток и др.), а также в зависимости от того, движется теплоноситель снаружи или внутри труб нагревательной камеры.

Различают выпарные аппараты с неорганизованной, или свободной, направленной естественной и принудительной циркуляцией раствора.

Выпарные аппараты делятся также на аппараты прямоточные, в которых выпаривание раствора происходит за один его проход через аппарат без циркуляции раствора и аппараты, работающие с многократной циркуляцией раствора.

В зависимости от организации процесса различают периодические и непрерывно действующие аппараты.

Аппараты со свободной циркуляцией раствора

Простейшими типами являются периодически действующие открытые выпарные чаши с паровыми рубашками и змеевиковые. В выпарных аппаратах с рубашками происходит мало интенсивная неупорядоченная циркуляция выпариваемого раствора вследствие разности плотностей более нагретых и менее нагретых веществ. Поверхности нагрева рубашек и соответственно нагрузки этих аппаратов очень невелики.

Применяют при выпаривании сильноагрессивных и вязких, выделяющих твердые осадки, растворов.

Значительно большей поверхностью теплообмена в единице объема обладают змеевиковые выпарные аппараты. Аппараты более компактные, чем аппараты с рубашками, и отличаются несколько большей интенсивностью теплопередачи. В этих аппаратах также производят выпаривание небольших количеств химически агрессивных сред.

В вертикальных аппаратах с направленной естественной циркуляцией выпаривание осуществляется при многократной естественной циркуляции раствора.

В аппаратах с внутренней нагревательной камерой и центральной циркуляционной трубой обеспечивается естественная циркуляция, улучшающая теплопередачу и препятствующая образованию накипи на поверхности теплообмена. Недостатком является жесткое крепление кипятильных труб, не допускающее значительной разности тепловых удлинении труб и корпуса аппарата.

В аппаратах с подвесной нагревательной камерой благодаря свободному подвесу нагревательной камеры устраняется опасность нарушения плотности соединения кипятильных труб с трубными решетками вследствие разности тепловых удлинении труб и корпуса аппарата. Интенсивность циркуляции в аппаратах с подвесной нагревательной камерой недостаточна для эффективного выпаривания высоковязких и особенно кристаллизирующихся растворов.

В аппаратах с выносными циркуляционными трубами достигается более интенсивная теплопередача и уменьшается расход метала на 1м2 поверхности нагрева по сравнению с аппаратами с подвесной нагревательной камерой или центральной циркуляционной трубой.

В аппаратах с выносной нагревательной камерой скорость циркуляции может достигать 1,5м/с, что позволяет выпаривать в них концентрированные и кристаллизирующиеся растворы, не опасаясь слишком быстрого загрязнения поверхности теплообмена.

Аппараты с вынесенной зоной кипения могут эффективно применятся для выпаривания кристаллизирующихся растворов умеренной вязкости. Коэффициенты теплопередачи в таких аппаратах достигают 3000 Вт/(м2град).

В отличии от аппаратов с естественной циркуляцией в прямоточных аппаратах выпаривание происходит при однократном прохождение выпариваемого раствора по трубам нагревательной камеры. Таким образом, выпаривание осуществляется без циркуляции раствора. Различают аппараты с восходящей пленкой (упаривание кипящих растворов) и со стекающей пленкой (упаривание вязких и термоноестойких растворов).

Для того чтобы устранить отложение накипи в трубах, особенно при выпаривании кристаллизирующихся растворов, необходима скорость циркуляции не менее 2-2,5 м/с. Такие условия можно создать в аппаратах с принудительной циркуляцией. Скорость циркуляции определяется производительностью циркуляционного насоса и не зависит от высоты уровня жидкости в трубах, и также от интенсивности парообразования.

По технологическим причинам использование многокорпусных выпарных аппаратов иногда может оказаться неприемлемым. Так, например, приходится отказываться от многокорпусного выпаривания тех чувствительных к высоким температурам растворов, для которых температура кипения в первых корпусах многокорпусных установок слишком высоки и могут вызвать порчу продукта.

Проанализировав физические свойства выпариваемого раствора выбираем выпарной трубчатый аппарат с естественной циркуляцией и соосной греющей камерой.


3. Технологический расчет

Поверхность теплопередачи корпуса выпарного аппарата определяется по основному уравнению теплопередачи:

(3.1)

где F- площадь теплообменника, м2; Q -количество передаваемой теплоты, Дж; k - коэффициент теплопередачи, Вт/(м2К); Dtп - полезная разность температур, К.

Для определения тепловых нагрузок Q, коэффициентов теплопередачи k, и полезной разности температур Dtп, необходимо знать количество упаренной воды, концентрацию раствора и ее температуру кипения в корпусе.

Производительность установки по выпариваемой воде определяют из уравнения материального баланса:

(3.2)

где W - производительность установки по упариваемой воде, кг/с; xн - начальная концентрация, xк - конечная концентрация, Gн - производительность установки (кг/с).

Температура кипения раствора в корпусе

:

tk=132C0

3.1 Материальный баланс

На выпаривание поступает

кг/с исходного раствора с концентрацией xн и удаляется Gк кг/с упаренного раствора с концентрацией xк. Если в аппарате выпаривается W кг/с растворителя, то общий материальный баланс выражается уравнением:

Производительность аппарата по упаренному раствору:

Производительность установки по выпариваемой воде:

В аппарат входит поток № 401 со следующим составом:

- карбамид - 95%;

- вода - 5%.

С аппарата выходят потоки № 402 и 709 со следующим составом:

№ 402 № 709
- карбамид - 99,8%; - карбамид - 12,02%;
- вода - 0,3%. - СО2 - 6,29%;
- NH3 - 0,44%;
- вода - 70,55%;
- инерты - 0,45%;
- O2 - 0,15%.

Расчет статьи прихода:

;

.

Расчет статьи расхода:

Поток № 402

;

.

Поток № 709

;

;

;

;

;

Таблица 3.1

Материальный баланс

Приход массы Расход массы
№ п/п Статья прихода М, кг/ч % № п/п Статья расхода М, кг/ч %
Раствор карбамида Раствор карбамида
в том числе: в том числе:
1 (NH2)2CO 26655,48 95 1 (NH2)2CO 26654,98 99.7
2 H2O 1402,92 5 2 H2O 53,42 0.3
Соковый пар
в том числе:
3 (NH2)2CO 162,27 12.02
4 СО2 84,92 6.29
5 NH3 140,94 10.44
6 H2O 954,425 70.55
7 Инерты 6,075 0.45
8 O2 2,025 0.15
Итого 28058,4 100 Итого 28058,4 100

3.2 Определение тепловых нагрузок