Смекни!
smekni.com

Простейшие кинетические уравнения Кинетические кривые (стр. 1 из 2)

Простейшие кинетические уравнения. Кинетические кривые.

3) Односторонняя реакция 2-го порядка и её стехиметрическое уравнение:

Представим текущий материальный баланс для этой реакции в виде таблице:
Реагенты и продукты A B = E F
Концентрации веществ в ходе реакции Вначале a B 0 0
Во времени a-x(t) b-x(t) x(t) x(t)

3.1) Если текущие концентрации реагентов различны, то удобно ввести лишь одну переменную x:

(2.1)

Если кинетика реакции исследуется от начального момента времени t=0, и в исход­ной смеси отсутствовал конечный продукт: x=0, то искомая функция концентрации продукта от времени выражается в виде:

(2.2)

Полученную зависимость x(t) удобно оставить в виде неявной функции, которая хорошо приспособлена для обработки экспериментальных данных:

; (2.3)

Используя обозначения

, придаём уравнению (2.3) линейный вид
. (2.4)

3.2) Односторонняя реакция 2-го порядка:

- если начальные концентрации с обоих реагентов равны a, то до самого окончания реакции равными останутся и их текущие концентрации a- x (у продуктов x), и получаем:

(2.5)

Аналогичное выражение имеет место и для одного реагента, превращающегося по реакции второго порядка, но в этом случае скорость исчезновения реагента возрастает вдвое:

(2.6)

Идеальный лабораторный пример, прямо-таки стандарт, химического превращения 2-го порядка представляет собою щелочное омыление сложных эфиров, и не случайно эту превосходно воспроизводимую реакцию с очень доступными, недорогими реагентами находим в ассортименте обязательного лабораторного студенческого практикума в любом химическом вузе мира...


.

4) Односторонняя реакция 3-го порядка и её возможные кинетические варианты:

4.1) – начальные концентрации все различны:

4.2) – начальные концентрации равны у двух реагентов:

4.3) – все начальные концентрации равны:

(2.7)

5) Односторонняя реакция произвольного n-го порядка при (с0=a):

(2.8)

т.е.

. (2.9)

Последнее уравнение (2.8) справедливо для любой реакции, но с некоторыми обязательными оговор­ками. Так в случае реакции 1-го порядка возникает неопределённость, устраняемая с помощью пра­вила Лопиталя. Для этого порядок реакции n считаем дифференцируемым параметром, представим формулу (2.9) дробью

и получим обычное выражение... :

(2.10)

Примечание: Производная степенной функции вычисляется по формуле:

6) Период полупревращения. Это время t1/2, в течение которого концентрация вещества изменяется вдвое:

. Это один из удобных формально-кинетических крите-риев... . Для реакции произвольного n-го порядка из формулы (2.9) получаем:

.

Используя обозначение

получаем

(2.11)

Проводят серию экспериментов, изменяя начальную концентрацию одного из реагентов. Определяют время убыли его концентрации вдвое, и обрабатывают данные в спрямляющих переменных согласно уравнению

(2.12)

Отсюда можно найти порядок реакции по данному реагенту. Методы кинетических измерений (очень разнообразны! ..см. книги Н.М. Эмануэля):

химические (Это основа основ! Важен исчерпывающий качественный и количественный анализ системы),физико-химические, включая: спектроскопические: ИКС, оптическая электронная спектроскопия (УФ, видимая), ЯМР, ЭПР и др., электрохимические: -полярография, кондуктометрия,

потенциометрия (ионометрия, pH-метрия,...), дилатометрия – кинетика изменения объёма (особенно в кинетике полимеризации!),манометрия – кинетика изменения давления (в газах),рефрактометрия –измерение показателя преломления, поляриметрия - кинетика изменения угла вращения плоско-поляризованого светового луча во время превращений оптически-активных (хиральных) соединений),калориметрия - кинетика температурных изменений - в рапидных процессах..., а также любые методы, в которых измеряемое свойство непосредственно и однозначно связано с материальным балансом в реагрирующей системе...

Успех кинетического эксперимента полностью определяется научным уровнем исследовательской ла-боратории: тщательностью химической подготовки, качеством физико-химического и приборного оформления, достоверностью и корректностью измерений... Уже созданы огромные современные химические производства (в США и Германии - заводы DUPON и BASF), проектирвание которых целиком построено на основе компью-терного моделирвания всех без исключения физико-химических процессов (и кинетических !!! тоже).

Для подобных целей исходные лабораторные данные должны быть безукоризненными.

Оптимизация условий и критерии постановки кинетического эксперимента:

Подбор диапазона концентраций, удобного для регистрации,

Понижение порядка по отдельным реагентам. Для этого почти все реагенты вводятся в реакцию в большом избытке по отношению к одному – исследуемому. Его концентрация значительно меняется на фоне почти неизменных прочих, и возникает возможность измерения кинетики именно по недостаточному реагенту. По нему и определяется частный порядок реакции. Возможность серийных экспериментов и воспроизводимость данных. Эти критерии в большой степени экономические. Стоимость пионерских измерений обычно значительна.

Химические реакторы. Кинетика и диффузия.

Устройства, предназначенные для кинетических измерений, называют химическими реакторами. Реактором может служить любой сосуд или его фрагмент, в том числе и такой, которому приданы какие-либо специальные геометрические формы. Различают реакто­ры статические и проточные. В свою очередь идеальные проточные бывают идеального смешения и идеального вытеснения. Концентрации веществ в реакторе во времени могут изменяться за счёт: а) химического превращения, б) массопереноса. Химическая реакция это переход системы в термодинамически - равновесное состояние за счёт перестройки молекулярно-атомной структуры её компонентов. Неравновесное распределение концентраций в реакционном пространстве является причиной массопереноса, и возникает диффузия. В гомогенной среде с однородным распределеним концентраций в статическом реакторе градиент концентраций отсутствует, и диффузии нет, но в проточных реакторах необходимо специально предусмотреть условия для количественного разделения концентрационных изменений чисто кинетической и диффузионной природы. Примеры химических реакторов показаны на рисунке. Эф­фективное (а в статическом реакторе полное) устранение градиента концентрации достигается искусственно механическим перемешиванием реакционной среды.

Выражения скорости химической

реакции в различных реакторах:

Рис. 3. ... у реакции 1-го порядка t1/2 не зависит от исходного содержания реагента в системе.


t -время; c0 –стартовая (начальная) концентрация... и c(t) –текущая концентрация реагента;

z- линейное смещение фронта гидродинамического потока (расстояние от стартового сечения);

u- модуль линейной скорости потока в реакторе идеального вытеснения; w- объёмная скорость потока в реакторе идеального смешения ; V- объём реактора идеального смешения; - время контакта в реакторе идеального смешения; r - скорость химической реакции;