Смекни!
smekni.com

Связь строения, состава и свойств материалов (стр. 1 из 3)

Связь строения, состава и свойств материалов

Строение и свойства

Знание строения строительного материала необходимо для понимания его свойств и в конечном итоге для решения практи­ческого вопроса, где и как применить материал, чтобы получить наибольший технико-экономический эффект.

Строение материала изучают на трех уровнях:

1) макрострук­тура материала - строение, видимое невооруженным глазом;

2) микроструктура материала - строение видимое в оптический микроскоп;

3) внутреннее строение веществ, составляющих мате­риал, на молекулярно-ионном уровне, изучаемом методами рентгено-структурного анализа, электронной микроскопии и т.п.

Макроструктура твердых строительных материалов может быть следующих типов: конгломератная, ячеистая, мелкопорис­тая, волокнистая, слоистая, рыхлозернистая (порошкообразная).

Искусственные конгломераты - это обширная группа, объе­диняющая бетоны различного вида, ряд керамических и других материалов.

Ячеистая структура характеризуется наличием макропор, свойственных газо- и пенобетонам, ячеистым пластмассам.

Мелкопористая структура свойственна, например, керамиче­ским материалам, поризованным способами высокого водозатворения и введением выгорающих добавок.

Волокнистая структура присуща древесине, стеклопласти­кам, изделиям из минеральной ваты и др. Ее особенностью явля­ется резкое различие прочности, теплопроводности и других свойств вдоль и поперек волокон.

Слоистая структура отчетливо выражена у рулонных, лис­товых, плитных материалов, в частности у пластмасс со слоистым наполнителем (бумопласта, текстолита и др.).

Рыхлозернистые материалы - это заполнители для бетона, зернистые и порошкообразные материалы для мастичной тепло­изоляции, засыпок и др.

2

Микроструктура веществ, составляющих материал, может быть кристаллическая и аморфная. Кристаллические и аморфные формы нередко являются лишь различными состояниями одного и того же вещества. Примером служит кристаллический кварц и различные аморфные формы кремнезема. Кристаллическая фор­ма всегда более устойчива. Чтобы вызвать химическое взаимодействие между кварцевым песком и известью, в технологии силикатного кирпича применяют автоклавную обработку отфор­мованного сырца насыщенным водяным паром с температурой не менее 175°С и давлением 0,8 МПа. Между тем трепел (аморфная форма диоксида кремния) вместе с известью после затворения водой образует гидросиликат кальция при нормальной темпера­туре 15-25°С. Аморфная форма вещества может перейти в более устойчивую кристаллическую форму.

В строительстве применяют поликристаллические каменные материалы, в которых разные кристаллы ориентированы беспо­рядочно. Подобные материалы рассматриваются как изотропные по своим строительно-техническим свойствам. Исключение со­ставляют слоистые каменные материалы (гнейсы, сланцы и др.).

Внутреннее строение веществ, составляющих материал, опре­деляет механическую прочность, твердость, тугоплавкость и дру­гие важные свойства материала.

Кристаллические вещества, входящие в состав строительного материала, различают по характеру связи между частицами, об­разующими пространственную кристаллическую решетку. Она может быть образована: нейтральными атомами (одного и того же элемента, как в алмазе, или различных элементов, как в Si02); ионами (разноименно заряженными, как в СаСОз, или одноимен­ными, как в металлах); целыми молекулами (кристаллы льда).

Ковалентная связь осуществляется обычно электронной па­рой, образуется в кристаллах простых веществ (алмаз, графит) и в кристаллах некоторых соединений из двух элементов (кварц, кар­борунд, другие карбиды, нитриды). Такие материалы выделяются очень высокой механической прочностью и твердостью, они весьма тугоплавки.

3

Ионные связи образуются в кристаллах тех материалов, в ко­торых связь имеет преобладающе ионный характер. Распростра­ненные строительные материалы этого типа гипс и ангидрид имеют невысокую прочность и твердость, не водостойки.

Молекулярные кристаллические решетки и соответствующие им молекулярные связи образуются преимущественно в кристал­лах тех веществ, в молекулах которых связи являются ковалентными. Кристалл этих веществ построен из целых молекул, кото­рые удерживаются друг около друга сравнительно слабыми вандер-ваальсовыми силами межмолекулярного притяжения (как в кристаллах льда). При нагревании связи между молекулами легко разрушаются, поэтому вещества с молекулярными решетками обладают низкими температурами плавления.

Силикаты, занимающие особое место в строительных мате­риалах, имеют сложную структуру, обусловившую их особенно­сти. Так, волокнистые материалы (асбест) состоят из параллель­ных силикатных цепей, связанных между собой положительными ионами, расположенными между цепями. Ионные силы слабее ковалентных связей внутри каждой цепи, поэтому механические воздействия, недостаточные для разрыва цепей, разделяют такой материал на волокна. Пластинчатые минералы (слюда, каолинит) состоят из силикатных групп, связанных в плоские сетки.

Состав и свойства

Строительный материал характеризуется химическим, мине­ральным и фазовым составом.

Химический состав строительных материалов позволяет су­дить о ряде свойств материала: огнестойкости, биостойкости, механических и других технических характеристиках. Химиче­ский состав неорганических веществ (цемента, извести и др.) и каменных материалов удобно выражать количеством содержа­щихся в них оксидов (%). Основные и кислотные оксиды химиче­ски связаны между собой и образуют минералы, которые и опре­деляют многие свойства материала.

4

Минеральный состав показывает, какие минералы и в каком количестве содержатся в вяжущем веществе или в каменном мате­риале. Например, в портландцементе содержание трехкальциевого силиката (ЗСаО*SiO2) составляет 45-60%, причем при большем его количестве ускоряется твердение, повышается прочность це­ментного камня.

Фазовый состав материала и фазовые переходы воды, нахо­дящиеся в его порах, оказывают влияние на все свойства и пове­дение материала при эксплуатации. В материале выделяют твер­дые вещества, образующие стенки пор, т.е. "каркас" материала, и поры, заполненные воздухом и водой. Если вода, являющаяся компонентом этой системы, замерзает, то образовавшийся в по­рах лед изменяет механические и тепломеханические свойства материала. Увеличение же объема замерзающей в порах воды вызывает внутренние напряжения, способные разрушить матери­ал при повторных циклах замораживания и оттаивания.

5

Строительные материалы – композиты

К композитам можно отнести многие строительные материалы: бетон и железобетон, строительные растворы, фибробетон, асбестоцемент, древесностружечные и древесноволокнистые плиты и др. Они не обладают прочностью истинных композитов, но в принцип состоят из тех же композитов: матрицы и упрочнителя.

Строительные материалы на основе неорганических и органи­ческих вяжущих веществ иногда объединяют названием искусст­венные конгломераты в отличие от природных конгломератов, имеющихся в земной коре. Природные и искусственные конгло­мераты образуются с обязательным цементированием полизерни­стых и другого вида заполнителей (наполнителей) - волокнистых, пластинчатых, посредством первичных связей (химических, элек­трических, металлических и т.п.) или вторичных веществ - вяжу­щих (связующих).

Свойства конгломерата в первую очередь обусловливаются сцеплением (склеиванием) связующего с заполнителем. В отсутст­вии такового компоненты материала образуют механическую смесь и проявляют независимо друг от друга индивидуальные свойства.

Неорганические и органические вяжущие обладают опреде­ленными клеющими способностями и их функции состоят в склеивании в единое целое отдельных зерен, частиц, образуя конгломерат. Поэтому все вяжущие можно считать клеями. Склеивание определяется двумя факторами: адгезией - прочностью сцепления клея и материала и когезией - прочностью самого клея. Нарушение склеивания может произойти по причине слабой адгезии или когезии (или же самого склеиваемого материала). В местах склейки возникает контактный слой, толщина которого у полимерных клеев равняется долям микрона, а у минеральных 20-50 мк.

Адгезия может быть специфической и механической. Специ­фическая адгезия объясняется различными видами физико-химических связей; механическая - шероховатостью поверхности, усадочными напряжениями, защемлением, вызывающим трение и др. Адгезия в чистом виде выявляется при нормальной

6

отрываю­щей силе, вызывающей нормальные напряжения. Высокая адге­зияя возможна только при совершенном контакте клея со склеи­ваемыми поверхностями. При этом большое значение имеет чис­тота поверхности, хорошая ее смачиваемость, шероховатость - что увеличивает площадь контакта.

У минеральных клеев наилучшими адгезионными свойствами обладают растворимое стекло, магнезиальный цемент, затем портландцемент и глиноземистый; худшими - пуццолановый и шлакопортландцемент, строительный гипс и известь. Строитель­ные растворы на портландцементе с высоким содержанием 2Ca0*Si02 показывают сцепление несколько выше, чем портландцемент с обычным минералогическим составом или с высоким содержанием 3CaO*SiО2.

В полимерных клеях адгезионные качества определяются функциональными группами, входящими в состав молекул: на­пример, гидроксильная - ОН, карбоксильная - СООН, нитрильная - CN и др. Немаловажную роль при этом играют режим по­лимеризации, ряд физико-химических и технологических факторов и их различные сочетания (повышенное давление, температу­ра, горячее прессование и т.п.). Высокими адгезионными свойст­вами обладают эпоксидные, полиэфирные, кремнийорганические и другие смолы.