Смекни!
smekni.com

Автоматизированные измерительные и диагностические комплексы, системы (стр. 5 из 8)

Телеизмерительные информационные системы (ТИИС). Они отлича­ются от ранее рассмотренных в основном длиной канала связи. Канал связи является наиболее дорогой и наименее надежной частью этих сис­тем, поэтому для ТИИС резко возрастает значение таких вопросов, как надежность передачи информации.

Телеизмерительные ИИС могут быть одно- или многоканальными. Они предназначаются для измерения параметров сосредоточенных и рассредоточенных объектов. В зависимости от того, какой параметр несущего сигнала используется для передачи информации, можно выделить ТИИС:

· интенсивности, в которых несущим параметром является значение тока или напряжения;

· частотные (частотно-импульсные), в которых измеряемый параметр меняет частоту синусоидальных колебаний или частоту следования им­пульсов;

· времяимпульсные, в которых несущим параметром является дли­тельность импульсов; к ним же относятся фазовые системы, в которых измеряемый параметр меняет фазу синусоидального сигнала или сдвиг во времени между двумя импульсами;

· кодовые (кодоимпульсные), в которых измеряемая величина переда­ется какими-либо кодовыми комбинациями.

Системы интенсивности подразделяются на системы тока и системы напряжения в зависимости от того, какой вид сигнала используется для информации. Этим системам присущи сравнительно большие погреш­ности, и они используются при передаче информации на незначительное расстояние.

Частотные ТИИС имеют большие возможности, поскольку в них прак­тически отсутствуют погрешности, обусловленные влиянием линий связи, и возрастает дальность передачи информации по сравнению с системами интенсивности.

Время-импульсные системы по длительности применяемых для пере­дачи импульсов подразделяют на две группы: системы с большим перио­дом (от 5 до 50 с) и системы с малым периодом (менее десятых долей секунды).

Длиннопериодные системы применяются в основном для измерения медленно меняющихся неэлектрических величин (уровень жидкости, давление газов и др.).

Короткопериодные системы имеют большое быстродействие. Для передачи коротких импульсов требуется большая полоса частот, пропус­каемых каналом связи. В силу этого такие системы с проводными лини­ями связи (ЛС) используются редко.

В последнее время получили широкое развитие адаптивные ТИИС, в которых алгоритмы работы учитывают изменение измеряемой величи­ны или окружающих условий (воздействий).

Основная цель применения адаптивных ТИИС состоит в исключении избыточности выдаваемой системой измерительной информации и в со­хранении или оптимизации метрологических характеристик (помехоус­тойчивости, быстродействия, погрешностей) при изменении условий из­мерительного эксперимента.

В адаптивных ТИИС используются алгоритмы адаптивной дискрети­зации и могут быть использованы алгоритмы адаптивной аппроксимации.

Обобщенная структура ИИС

Рассмотренные выше измерительные информационные системы пока­зывают, что почти для каждого типа ИИС используется цепочка из аппарат­ных модулей (измерительных, управляющих, интерфейсных, обрабатываю­щих). Таким образом, обобщенная структурная схема ИИС содержит:

· множество различных первичных измерительных преобразователей, размещенных в определенных точках пространства стационарно или перемещающихся в пространстве по определенному закону;

· множество измерительных преобразователей, которое может состо­ять из преобразователей аналоговых сигналов, коммутаторов аналоговых сигналов, аналоговых вычислительных устройств, аналоговых устройств памяти, устройств сравнения аналоговых сигналов, аналоговых каналов связи, аналоговых показывающих и регистрирующих измерительных приборов;

· группу аналого-цифровых преобразователей, а также аналоговых устройств допускового контроля;

· множество цифровых устройств, содержащее формирователи им­пульсов, преобразователи кодов, коммутаторы, специализированные цифровые вычислительные устройства, устройство памяти, устройство сравнения кодов, каналы цифровой связи, универсальные программируе­мые вычислительные устройства - микропроцессоры, микроЭВМ и др.;

· группу цифровых устройств вывода, отображения и регистрации, которая содержит формирователи кодоимпульсных сигналов, печатающие устройства записи на перфоленту и считывания с перфоленты, накопите­ли информации на магнитной ленте, на магнитных дисках и на гибких магнитных дисках, дисплеи, сигнализаторы, цифровые индикаторы;

· множество цифроаналоговых преобразователей;

· указанные функциональные блоки соединяются между собой через стандартные интерфейсы или устанавливаются жесткие связи;

· интерфейсные устройства (ИФУ), содержащие системы шин, интер­фейсные узлы и интерфейсные устройства аналоговых блоков, служа­щие главным образом для приема командных сигналов и передачи ин­формации о состоянии блоков. Например, через интерфейсные устрой­ства могут передаваться команды на изменение режима работы, на под­ключение заданной цепи с помощью коммутатора;

· устройство управления, формирующее командную информацию, принимающее информацию от функциональных блоков и подающее ко­манды на исполнительные устройства для формирования воздействия на объект исследования (ОИ).

Однако не для всякой ИИС требуется присутствие всех блоков. Для каждой конкретной системы количество блоков, состав функций и связи между блоками устанавливаются услови­ями проектирования.

ИНТЕРФЕЙСЫ ИЗМЕРИТЕЛЬНЫХ СИСТЕМ

Общие понятия и определения

В настоящее время ИИС находят все более широкое применение в различных областях науки и техники. Они применяются в качестве компонентов сложных информационно-вычислительных комплексов и систем автоматизации. Особенно важную роль играют автоматические ИИС, ис­пользующие ЭВМ для программного управления работой системы.

Возросшие объемы проводимых измерений привели к широкому использованию программно-управляемых СИ. При этом возросшие требо­вания к характеристикам СИ оказали существенное влияние на методы сопряжения устройств, образующих ИИС.

Информационно-измерительные системы содержат ряд подсистем: измерительную, сбора, преобразования, предварительной обработки данных и подсистемы управления СИ в целом. Все подсистемы в ИИС соединены между собой в единую систему. Кроме того, ИИС в настоящее время проек­тируют на основе агрегатного (модульного) принципа, по которому уст­ройства, образующие систему, выполняются в виде отдельных, самостоя­тельных изделий (приборов, блоков). В составе ИИС эти устройства выпол­няют определенные операции и взаимодействуют друг с другом, переда­вая информационные и управляющие сигналы через систему сопряжения.

Для унифицированных систем сопряжения между устройствами, участ­вующими в обмене информации, стал общепринятым термин интерфейс (interface). Под интерфейсом (или сопряжением) понимают совокуп­ность схемотехнических средств, обеспечивающих непосредственное взаимодействие составных элементов ИИС (ГОСТ 15971—74). Устройства подсоединяются к системе сопряжения и объединяются в ИИС по опреде­ленным правилам, относящимся к физической реализации сопряжении. Конструктивное исполнение этих устройств, характеристики вырабатывае­мых и принимаемых блоками сигналов и последовательности выдавае­мых сигналов во времени позволяют упорядочить обмен информацией между отдельными функциональными блоками (ФБ).

Под интерфейсной системой понимают совокупность логических уст­ройств, объединенных унифицированным набором связей и предназначен­ных для обеспечения информационной, электрической и конструктивной совместимости. Интерфейсная система также реализует алгоритмы взаи­модействия функциональных модулей в соответствии с установленными нормами и правилами.

Возможны два подхода к организации взаимодействия элементов системы и построению материальных связей между ними:

жесткая унификация и стандартизация входных и выходных пара­метров элементов системы;

использование функциональных блоков с адаптивными характерис­тиками по входам-выходам.

На практике часто сочетают оба подхода. Стандартизация интерфей­сов позволяет:

· проектировать ИИС различных конфигураций;

· значительно сократить число типов СИ и их устройств сопряжения;

· ускорить и упростить разработку отдельных СИ и ИИС в целом;

· упростить техническое обслуживание и модернизацию ИИС;

· повысить надежность ИИС.

Применение развитых стандартных интерфейсов при организации ИИС позволяет обеспечить быструю компоновку системы и разработку программ управления СИ.

Основной структурной единицей ИИС является функциональный блок ФБ, который представляет собой один или несколько объединенных и взаимодействующих между собой измерительных преобразователей. Взаимодействие ФБ осуществляется через интерфейсные блоки ИБ по командам, организующим обмен данными. Команды управления форми­руются в управляющем блоке УБ и воздействуют на интерфейсные блоки через контроллер (К).

Между ФБ ИИС осуществляется обмен информационными и управляющими сообщениями. Информационное сообщение содержит сведения о значении измеряемого параметра, диапазоне измерения, времени изме­рения, результатах контроля состояния измерительных каналов и др. Управляющее сообщение содержит сведения о режиме работы ФБ, поряд­ке выполнения ими последовательности операций во времени, команде контроля состояния измерительных каналов.

Интерфейс может быть общим для устройств разных типов, наиболее распространенные интерфейсы определены международными, государ­ственными и отраслевыми стандартами. Стандарт (ГОСТ 26016—81 "Еди­ная система стандартов приборостроения. Интерфейсы, признаки клас­сификации и общие требования") включает четыре признака классифика­ции: способ соединения комплектов системы (магистральный, радиаль­ный, цепочечный, комбинированный); способ передачи информации (па­раллельный, последовательный, параллельно-последовательный); принцип обмена информацией (асинхронный, синхронный); режим передачи ин­формации (двусторонняя одновременная передача, двусторонняя пооче­редная передача, односторонняя передача).