Смекни!
smekni.com

Генный и хромосомный уровни контроля развития (стр. 1 из 4)

Н.Я. Вайсман, к.б.н., Институт цитологии и генетики СО РАН, Новосибирск

Введение

Впечатляющий прогресс в клонировании млекопитающих, в основе которого лежат эксперименты по трансплантации ядер дифференцированных клеток в энуклеированные ооциты, привнес новые доказательства того, что эукариотический геном не претерпевает необратимых изменений в ходе дифференцировки и может быть репрограммирован до уровня потенций, сходного с зиготой (Kikyo, Wolffe, 2000; Rideout et al., 2001; Surani, 2001). Более того, показано, что ядра высокодифференцированных клеток, таких, как В- или Т-лимфоциты, способны к полному репрограммированию, несмотря на то, что некоторые их гены (иммуноглобулины и Т-рецепторы) претерпевают перестройку в ходе дифференцировки (Hochedlinger, Jaenisch, 2002). И хотя остается неясным, способны ли к репрограммированию геномы любых типов дифференцированных клеток, список способных к репрограммированию разнообразных типов клеток достаточно велик и включает: фибро- бласты эмбрионов и взрослых животных, клетки кумулюса, эпителиальные клетки молочной железы и яйцевода, эмбриональные стволовые клетки, В- и Т-лимфоциты, незрелые клетки Сертоли и пролиферирующие нейральные клетки коры головного мозга эмбрионов (Ogura et al., 2000; Wakayama, Yanagimachi, 2001; Yamazaki et al., 2001; Hochedlinger, Jaenisch, 2002; Miyashita et al., 2002). Важно отметить, что ранее в экспериментах по трансплантации ядер дифференцированных клеток в энуклеированные яйца или ооциты амфибий были также получены результаты, однозначно свидетельствующие, что процесс дифференцировки во многих случаях не сопровождается необратимыми изменениями в геноме (Gurdon et al., 1979; Gurdon, 1986; 1999). Таким образом, совокупность данных по клонированию амфибий и млекопитающих согласуется с идеей, что в основе развития лежит дифференциальная активность генов, а фенотипическое разнообразие клеточных типов дефинитивного организма поддерживается эпигенетическими механизмами (Latham, 1999). Важно подчеркнуть, что этот принцип является общим для развития как животных, так и растений (Meyerowitz, 2002), несмотря на то, что между ними существуют огромная эволюционная дистанция и существенные различия в характере развитии. Cреди растений в естественных условиях широко распространено вегетативное размножение, включающее репрограммирование специализированных клеток (листа, стебля или корня) с последующим формированием дефинитивных форм с полноценными органами размножения.

Взаимодействие генов и генный контроль развития

Геномы многоклеточных эукариот содержат многие тысячи генов, например, нематоды C. elegans примерно 19000 (The C. elegans Sequencing Consortium…, 1998), дрозофилы - 13600 генов (Adams et al., 2000), человека - 30000-40000 (International Human Genome Sequencing Consortium…, 2001), а Arabidopsis thaliana - почти 25500 (The Arabidopsis Genome Initiative…, 2000). Благодаря функционированию этих генов обеспечивается развитие и жизнедеятельность дефинитивного организма, состоящего из разнообразного типа специализированных дифференцированных клеток. Так, например, у человека (как и большинства млекопитающих) идентифицировано более 200 типов клеток, которые, в свою очередь, могут быть дополнительно подразделены (чаще идентифицируются с помощью молекулярных маркеров) на множество более специализированных функционально и отчасти морфологически типов клеток (Volpert et al., 1998; Surani, 2001). Согласно современной парадигме о дифференциальной активности генов в развитии, предполагается, что все фенотипическое разнообразие соматических специализированных клеток основывается на том, что в каждом конкретном клеточном типе функционирует свойственный только этому типу набор экспрессирующихся генов.

Из сравнительного анализа геномов млекопитающих следует, что генный состав их сходен у большинства изученных видов, несмотря на разительные морфологические различия между ними. Более того, функционально важные для развития гены (иногда используют термин "гены развития", подчеркивая их важность в процессах дифференцировки, такие, как транскрипционные факторы, гомеобокс-содержащие гены и гены, кодирующие трансмембранные белки, ответственные за проведение регуляторных индукционных сигналов между клетками) эволюционно консервативны и присутствуют в геномах позвоночных и даже беспозвоночных, выполняя порой сходные функции в развитии. Сходство геномов разных видов наблюдается и на уровне генных ассоциаций. Так, например, у всех видов млекопитающих сходен генный состав Х-хромосом, а среди аутосом идентифицировано более десяти крупных консервативных ассоциаций синтенных генов, которые сохраняются полностью или частично у большинства изученных видов млекопитающих (O'Brien et al., 1999 a, b). Из этого следует, что онтогенез разных видов млекопитающих базируется на функционировании сходных наборов гомологичных (гомеологичных) генов, которые к тому же нередко сходно организованы на хромосомном уровне. В то же время наблюдаемое широчайшее многообразие морфологических форм млекопитающих дает основание заключить, что непременным атрибутом онтогенеза является его видоспецифичность.

Для объяснения этого феномена - видоспецифичности онтогенеза - предполагается, что в процессе эволюции в генах, контролирующих те или иные этапы развития, происходят структурные изменения, затрагивающие либо кодирующую их часть, либо их цис-регуляторные последовательности, прилежащие к кодирующей части (Carroll, 2000; Stern, 2000), в результате чего изменяются временные и/или тканеспецифические параметры их экспрессии. Негласно предполагается, что такие изменения экспрессии генов в конечном счете трансформируются в изменениях тех или иных процессов морфогенеза, что и приводит к появлению разнообразия морфологических форм животных и растений.

Если рассматривать развитие с точки зрения экспрессии генов, то оно представляется как многоступенчатый динамический процесс с постоянно меняющимися спектрами экспрессирующихся генов в зависимости от стадии эмбриональной дифференцировки. Палитра экспрессирующихся генов значительно усложняется, если учесть, что на разных стадиях развития (особенно ранних) происходит формирование многообразных закладок, приводящих к появлению различного рода специализированных типов дифференцированных клеток, т.е. набор экспрессирующихся генов на той или иной стадии развития представляет собой сумму спектров "индивидуальных" закладок или дифференцированных клеток. Важно учесть при этом, что в эти смены спектров вовлечены многие сотни или тысячи генов, расположенных на разных хромосомах или в разных сайтах в пределах одной хромосомы. Последнее предполагает необыкновенно четкую координацию экспрессии множества генов на протяжении всего развития и всей дальнейшей жизни взрослого индивидуума, являющейся продолжением развития (Gilbert, 1991). В этом случае вполне оправдано применение термина "программа развития", если подразумевать под этим именно строго упорядоченную во времени и пространстве скоординированную экспрессию сотен и тысяч генов.

В настоящее время отсутствует четко сформулированное представление о том, что лежит в основе "программы развития". Это не означает, что к решению этой проблемы нет каких-либо перспективных подходов. Благодаря прогрессу в молекулярной биологии стала наполняться содержанием концепция (до недавнего времени больше напоминавшая соображение общего характера), согласно которой процесс развития покоится на взаимодействии генов, при котором продукты генов предшествовавших стадий развития активируют новые генные наборы в последующие стадии и/или репрессируют отдельные гены предыдущих. Такой тип взаимодействия генов Lewin (1994) определил как "каскадное", подчеркивая этим преемственность в экспрессии генов ранних и более поздних стадий. Действительно, существуют примеры такого рода взаимодействия генов в развитии, например в раннем развитии дрозофилы белковый продукт гена bicoid выступает в качестве типичного морфогена, формируя передний полюс передне-задней оси эмбриона. Этот же ген на более поздней стадии развития проявляет себя как позитивный регулятор одного из первых зиготических генов, гена hunchback, связываясь с его промотором. В свою очередь, белок hunchback является регулятором других генов группы gap, причем экспрессию одних (Kruppel и knirps) он подавляет, а других - активирует (giant). При формировании границ будущих сегментов у дрозофилы важную роль играет ген even-skipped, экспрессия которого регулируется белками Kruppel, giant (репрессоры) и bicoid и hunchback (активаторы) (Lewin, 1994; Volpert et al., 1998). Примером могут также служить скоординированные иерархические взаимодействия между гомеобокссодержащими генами, входящими в комплексы генов С-ANT и С-BX у дрозофилы или комплексы генов: HOXA, HOXB, HOXC и HOXD у млекопитающих (Lewin, 1994; Volpert et al., 1998).

В геномах эукариот доля генов, выполняющих функции транскрипционных факторов, невелика: у дрозофилы около 700, или 5% всех генов, из них 279 участвуют в контроле развития (2,5%) (Adams et al., 2000), у нематоды C. elegans 500, или 2,5% (The C. Elegans Sequencing Consortium…, 1998), а у Arabidopsis thaliana 500, или 2% (The Arabidopsis Genome Initiative…, 2000). Из этого следует, что на каждый ген-регулятор приходится 40-50 генов-мишеней. Каким образом осуществляется координация экспрессии генов-мишеней при малом числе генов-регуляторов? В последние годы активно развивается представление, что, возможно, существует специальный класс транскрипционных факторов - "селекторные" гены, которые напрямую связываются с цис-регуляторными элементами генов-мишеней и объединены в единую "генную регуляторную сеть" ("genetic regulatory network"), в результате чего происходит координированная экспрессия генов, приводящая к формированию той или иной морфологически сложной структуры (Guss et al., 2001). В настоящее время удалось идентифицировать несколько "селекторных" генов: eyeless, Distalless и scalloped. Функционирование такой "генной регуляторной сети" можно проиллюстрировать на примере образования крыла у дрозофилы. Как показали Guss et al. (2001), фактор scalloped в комплексе с транскрипционными факторами vestigial и spalt трансмембранной сигнальной системы Decapentaplegic и cut системы Notch контролируют образование всех частей крыла, то есть один ген-селектор scalloped через генную регуляторную сеть осуществляет контроль образования сложной структуры. Как полагают авторы (Guss et al., 2001), это, возможно, общий принцип генного контроля морфогенеза в развитии.