Смекни!
smekni.com

Шпаргалки (биология) для выпускных экзаменов в 11 классе (стр. 8 из 15)

развитие рыб, пресмыкающихся, птиц, млекопитающих, некоторых видов насекомых. Так, малек рыбы похож на взрослую рыбу, утенок на утку, котенок на кошку;

2) непрямое развитие – рождение или выход из яйца потомства, отличающегося от взрослого организма по морфологическим признакам, образу жизни (типу питания, характеру передвижения). Пример: из яиц майского жука появляются червеобразные личинки, живут в почве и питаются корнями в отличие от взрослого жука (живет на дереве, питается листьями).

Стадии непрямого развития насекомых: яйцо, личинка,куколка, взрослая особь. Особенности жизни животных на стадии яйца и куколки – они неподвижны. Активный образ жизни личинки и взрослого организма, разные условия обитания, использование разной пищи.

4. Значение непрямого развития – ослабление конкуренции между родителями и потомством, так как они поедают разную пищу, у них разные места обитания. Непрямое развитие – важное приспособление, возникшее в процессе эволюции. Оно способствует ослаблению борьбы за существование между родителями и потомством, выживанию животных на

ранних стадиях послезародышево-го развития.

2.

1. Изучение Г. Менделем наследственности с помощью гибридологического метода – скрещивания родительских форм, различающихся по определенным признакам, и изучение характера их наследования в ряду поколений.

2. Скрещивание гомозиготной доминантной и рецессивной особей, появление в первом гибридном поколении всех особей с доминантным признаком. Причина: все гибридные особи имеют гетерози-готный генотип, например, Аа, в котором доминантный ген подавляет рецессивный.

3. Проявление закона расщепления при скрещивании между собой гибридов первого поколения Аа хАа. Дальнейшее размножение гибридов – причина расщепления, появления в потомстве Fg особей с рецессивными признаками, составляющих примерно четвертую часть от всего потомства.

4. Причины отсутствия расщепления во втором и последующих поколениях гомозиготных рецессивных особей – образование гамет одного типа, наличие в них лишь рецессивного гена, например, гамет с генами а. Слияние при оплодотворении мужской и женской гамет с генами а и а – причина образования гомозиготно-го потомства с рецессивным генотипом – аа.

5. Гомозиготы – организмы, содержащие в клетках два одина-

ковых гена по данному признаку (АА либо аа), отсутствие у них расщепления признаков в последующих поколениях. Гетерозиготы – организмы, содержащие в клетках разные гены по какому-либо признаку (Аа), дающие расщепление признаков в последующих поколениях.

3.

Надо исходить из того, что ДНК служит матрицей для иРНК, она обеспечивает последовательность нуклеотидов в иРНК. Двойная спираль ДНК с помощью ферментов разъединяется, к одной ее цепи поступают нуклеотиды. На основе принципа дополнительности нуклеотиды располагаются и фиксируются на матрице ДНК в строго определенной последовательности. Так, к нуклеотиду Ц всегда присоединяется нуклеотид Г или наоборот:

к Г – Ц, а к нуклеотиду А–У РНК вместо тимина нуклеотид урацил). Затем нуклеотиды соединяются между собой и молекула иРНК сходит с матрицы.

Билет № 16

1. Гены и хромосомы как материальные основы наследственности. Их строение и функционирование.

2. Биогеоценоз как экологическая система, его звенья, связи между ними. Растения – начальное звено цепей питания в биоге-оценозе.

3. Решить задачу на сцепленное с полом наследование.

1.

1. Ген – отрезок молекулы ДНК, носитель наследственной информации о первичной структуре одного белка. Локализация в одной молекуле ДНК нескольких сотен генов. Каждая молекула ДНК – носитель наследственной информации о первичной структуре сотен молекул белка.

2. Хромосома – важная составная часть ядра, состоящая из одной молекулы ДНК в соединении с молекулами белка. Следовательно, хромосомы – носители наследственной информации. Число, форма и размеры хромосом – главный признак, генетический критерий вида. Изменение числа, формы или размера хромосом – причина мутаций, которые часто вредны для организма.

3. Высокая активность деспи-рализованных хромосом в период интерфазы. Самоудвоение молекул ДНК, их участие в синтезе иРНК, белка.

4. Ген (отрезок молекулы ДНК} матрица для синтеза иРНК, а иРНК – матрица для синтеза белка. Матричный характер реакций самоудвоения молекул ДНК, синтеза иРНК, белка – основа передачи наследственной информации от гена к признаку, который определяется молекулами белка. Многообразие белков, их специфичность, многофункциональность – основа формирования различных признаков у организма, реализации заложенной в генах наследственной информации.

5. Самоудвоение хромосом, спи-рализация, четкий механизм их

распределения между дочерними клетками в процессе митоза – путь передачи наследственной информации от материнской к дочерним клеткам.

6. Путь передачи наследственной информации от родителей потомству: образование половых клеток с гаплоидным набором хромосом, оплодотворение, образование зиготы – первой клетки дочернего организма с диплоидньш набором хромосом.

2.

1. Многообразие видов растений, животных и других организмов, их закономерное расселение в природе, возникновение в процессе эволюции относительно постоянных природных комплексов.

2. Биогеоценоз (экосистема) – совокупность взаимосвязанных видов (популяций разных видов), длительное время обитающих на определенной территории с относительно однородными условиями. Лес, луг, водоем, степь – примеры экосистем.

3. Автотрофный и гетеротрофный способы питания организмов, получения ими энергии. Характер питания – основа связей между особями разных популяций в биогеоценозе. Использование автотрофами (в основном растениями) неорганических веществ и солнечной энергии, создание из них органических веществ. Использование гетеротрофами (животными, грибами, большинством бактерий) готовых органических

веществ, синтезированных автотрофами, и заключенной в них энергии.

4. Организмы – производители органического вещества, потребители и разрушители – основные звенья биогеоценоза. 1) Организмы-производители – ав-тотрофы, в основном растения, создающие органические вещества из неорганических с использованием энергии света; 2) организмы-потребители – гетеротрофы, питаются готовыми органическими веществами и используют заключенную в них энергию (животные, грибы, большинство бактерий); 3) организмы-разрушители – гетеротрофы, питаются остатками растений и животных, разрушают органические вещества до неорганических (бактерии, грибы).

5. Взаимосвязь организмов производителей, потребителей, разрушителей в биогеоценозе. Пищевые связи – основа круговорота веществ и превращения энергии в биогеоценозе. Цепи питания – пути передачи вещества и энергии в биогеоценозе. Пример: растения –> растительноядное животное (заяц) –> хищник (волк). Звенья в цепи питания (трофические уровни): первое – растения, второе – растительноядные животные, третьи – хищники.

6. Растения – начальное звено цепей питания благодаря их способности создавать органические вещества из неорганических с использованием солнечной энергии. Разветвленность цепей питания:

особи одного трофического уровня

(производители) служат пищей для организмов нескольких видов другого трофического уровня (потребителей).

7. Саморегуляция в биогеоце-нозах – поддержание численности особей каждого вида на определенном, относительно постоянном уровне. Саморегуляция – причина устойчивости биогеоценоза. Его зависимость от разнообразия обитающих видов, многообразия цепей питания, полноты круговорота веществ и превращения энергии.

3.

Надо учитывать, что наследование признаков, контролируемых генами, расположенными в Х-хро-мосоме, будет происходить иначе, чем контролируемых генами, находящимися в аутосомах. Например, наследование гена гемофилии связано с Х-хромосомой, в которой он расположен. Доминантный ген Н обеспечивает свертываемость крови, а рецессивный генh – несвертываемость. Если женщина имеет в клетках два генаhh, то у нее проявляется болезнь, еслиHh – болезнь не проявляется, но она является носителем гена гемофилии. У мужчин гемофилия проявляется при наличии одного гена h, так как у него всего одна Х-хромо-сома.

Билет № 17

1. Закон независимого наследования признаков. Причины расщепления признаков у гетеро-зигот.

2. Биогеоценоз дубравы, его биотические и абиотические факторы. Цепи питания в дубраве.

3. Рассмотреть под микроскопом микропрепарат митоза в клетках корешка лука, найти клетку в состоянии интерфазы, зарисовать ее и назвать признаки интерфазы.

1.

1. Г. Мендель – основоположник генетики, которая изучает наследственность и изменчивость организмов, их материальные основы.

2. Открытие Г. Менделем правила единообразия, законов расщепления и независимого наследования. Проявление правила единообразия и закона расщепления во всех видах скрещивания, а закона независимого наследования – при дигибридном и полигибридном скрещивании.

3. Закон независимого наследования – каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Пример:

при скрещивании растений гороха с желтыми и гладкими семенами (доминантные признаки) с растениями с зелеными и морщинистыми семенами (рецессивные признаки) во втором поколении происходит расщепление в соотношении 3:1 (три части желтых и одна часть зеленых семян) и 3:1 (три части гладких и одна часть морщинистых семян). Расщепление по одному признаку идет независимо от расщепления по другому.