Смекни!
smekni.com

Физиология мышц (стр. 1 из 2)

Содержание

Физиология мышц классификация мышечных волокон

Функции скелетных и гладких мышц

Режимы сокращения мышц

Виды сокращений

Строение мышцы

Функциональные особенности гладких мышц

Физиология, мышц классификация мышечных волокон

Мышечные волокна делят на 3 вида: скелетные, сердечные и гладкие.

Скелетные волокна подразделяются на фазные (они генерируют ПД) и тонические (не способны генерировать полноценный потенциал действия распространяющегося типа). Фазные волокна делятся на быстрые волокна (белые, гликолитические) и медленные волокна (красные, окислительные волокна).

Гладкие мышцы делятся на тонические и фазнотонические. Тонические волокна не способны развивать "быстрые" сокращения. В свою очередь фазнотонические мышцы можно условно разделить на обладающие автоматией - способные к спонтанной генерации фазных сокращений, и на мышцы, не обладающие свойством автоматии.

Основным морфо - функциональным элементом нервно-мышечного аппарата является двигательная единица (ДЕ). ДЕ - это мотонейрон с иннервируемыми им мышечными волокнами. Аксон мотонейрона из спинного мозга проходит в составе периферических нервов до мышцы, внутри которой разветвляется на множество концевых веточек. Каждая концевая веточка заканчивается на одном мышечном волокне, образуя нервно-мышечный синапс. Импульсы, идущие по аксону мотонейрона, активируют все иннервируемые им мышечные волокна. Поэтому ДЕ функционирует как единое морфофункциональное образование.

Функции скелетных и гладких мышц

Скелетные мышцы составляют 40% от массы тела и выполняют ряд важных функций:

1 - передвижение тела в пространстве, 2 - перемещение частей тела относительно друг друга, 3 - поддержание позы, 4 - передвижение крови и лимфы, 5 - выработка тепла, 6 - участие в акте вдоха и выдоха, 7 - двигательная активность как важнейший антиэнтропийный и антистрессовый фактор (тезисы "движение - это жизнь" или "кто много двигается, тот много живет" - имеют реальную материальную основу), 8 - депонирование воды и солен, 9 - защита внутренних органов (например, органов брюшной полости).

Гладкие мышцы обеспечивают функцию полых органов, стенки которых они образуют. В частности, благодаря гладким мышцам осуществляется изгнание содержимого из мочевого пузыря, кишки, желудка, желчного пузыря, матки. Гладкие мышцы обеспечивают сфинктерную функцию - создают условия для хранения содержимого полого органа в этом органе, например, мочу в мочевом пузыре, плод в матке. Важнейшую роль выполняют гладкие мышцы в системе кровообращения и лимфообращения - изменяя просвет сосудов, гладкие мышцы тем самым адаптируют регионарный кровоток к местным потребностям в кислороде, питательных веществах. Гладкие мышцы могут существенно влиять на функцию связочного аппарата, т.к содержатся во многих связках и при своем сокращении меняют состояние данной связочной структуры. Например, ГМК (гладкомышечные клетки) содержатся в широкой связке матки.

Режимы сокращения мышц

Для скелетной мышцы характерны два основных режима сокращения - изометрический и изотонический. Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз) - она не укорачивается. Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом мышца укорачивается - меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза. Так как изотоническое сокращение не является "чисто" изотоническим (элементы изометрического сокращения имеют место в самом начале сокращения мышцы), а изометрическое сокращение тоже не является "чисто" изотоническим (элементы смещения все-таки есть, несомненно), то предложено употреблять термин "ауксотоническое сокращение" - смешанное по характеру.

Понятия "изотонический", "изометрический" важны для анализа сократительной активности изолированных мышц и для понимания биомеханики сердца.

Режимы сокращения гладких мышц. Целесообразно выделить изометрический и изотонический режимы (и, как промежуточный - ауксотонический). Например, когда мышечная стенка полого органа начинает сокращаться, а орган содержит жидкость, выход для которой перекрыт сфинктером, то возникает ситуация изометрического режима: давление внутри полого органа растет, а размеры ГМК не меняются (жидкость не сжимается). Если это давление станет высоким и приведет к открытию сфинктера, то ГМК переходит в изотонический режим функционирования - происходит изгнание жидкости, т.е. размеры ГМК уменьшаются, а напряжение или сила - сохраняется постоянной и достаточной для изгнания жидкости.

Виды сокращений

У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение, или тетанус. Одиночное сокращение - это сокращение, которое возникает на одиночный стимул, достаточный для вызова возбуждения мышцы. После короткого скрытого периода (латентный период) начинается процесс сокращения. При регистрации сократительной активности в изометрических условиях (два конца неподвижно закреплены) в первую фазу происходит нарастание напряжения (силы), а во вторую - ее падение до исходной величины. Соответственно эти фазы называют фазой напряжения и фазой расслабления. При регистрации сократительной активности в изотоническом режиме (например, в условиях обычной миографической записи) эти фазы будут называться соответственно фазой укорочения и фазой удлинения. В среднем сократительный цикл длится около 200 мс (мышцы лягушки) или 30-80 мс (у теплокровных). Если на мышцу действует серия прямых раздражении (минуя нерв) или непрямых раздражении (через нерв), но с большим интервалом, при котором всякое следующее раздражение попадает в период после окончания 2-й фазы, то мышца будет на каждый из этих раздражителей отвечать одиночным сокращением.

Суммированные сокращения возникают в том случае, если на мышцу наносятся 2 и более раздражения, причем всякое последующее раздражение (после предыдущего) наносится либо во время 2-й фазы (расслабления или удлинения), либо во время 1-й фазы (укорочения или напряжения).

Одиночное сокращениеА - потенциал действия; Б - сокращение мышцы1 - фаза напряжения; 2 - фаза расслабления Суммированное сокращениеа - одиночное сокращение; б-г - зубчатый тетанус; д - гладкий тетанус

В случае, когда всякое второе раздражение попадает в период фазы расслабления (удлинения), возникает частичная суммация - сокращение еще полностью не закончилось, а уже возникло новое. Если подается много раздражителей с подобным интервалом, то возникает явление зубчатого тетануса. Если раздражители наносятся с меньшим интервалом и каждое последующее раздражение попадает в фазу укорочения, то возникает так называемый гладкий тетанус.

Строение мышцы

Скелетная мышца состоит из пучков вытянутых в длину клеток - мышечных волокон, обладающих тремя свойствами: возбудимостью, проводимостью и сократимостью. Отличительной чертой мышечных клеток от клеток, не обладающих свойством сократимости, является наличие саркоплазматического ретикулума. Он представляет собой замкнутую систему внутриклеточных трубочек и цистерн, окружающих каждую миофибриллу. В мембране саркоплазматического ретикулума находятся две транспортные системы, обеспечивающие освобождение от ретикулума ионов кальция при возбуждении и их возврат из миоплазмы обратно в ретикулум при расслаблении мышцы. В механизме освобождения ионов кальция из ретикулума при возбуждении мышечной клетки важную роль играет система поперечных трубочек (Т-система), представляющих собой выпячивания поверхностной мембраны мышечного волокна.

Мышечные волокна имеют диаметр от 10 до 100 мкм и длину от 5 до 400 мм (в зависимости от длины мышцы). В каждом мышечном волокне содержится до 1000 и более сократительных элементов миофибрилл, толщиной 1-3 мкм. Каждая миофибрилла состоит из множества параллельно лежащих толстых и тонких нитей - миофиламентов. Толстые нити состоят из молекул белка миозина, а тонкие - из белка актина.

Расположение миозиновых и тонких актиновых белковых нитей строга упорядочено (рис.4.1). Пучок лежащих в середине саркомера нитей миозина выглядит в световом микроскопе как темная полоска. Благодаря свойству двойного лучепреломления в поляризованном свете (то есть анизотропии) она называется А-диском. По обе стороны от А-диска находятся участки, которые содержат только тонкие нити актина и поэтому выглядят светлыми. Эти изотропные J-диски тянутся до Z-пластин. Благодаря такому периодическому чередованию светлых и темных полос миофибриллы скелетной мышцы выглядят исчерченными (поперечно - полосатыми). Если мышца расслаблена, то в средней части А-диска различается менее плотная Н-зона, состоящая только из толстых миофиламентов. Н-зона не просматривается во время сокращения мышцы. По середине J-диска проходит темная полоска - это Z линия. Участок миофибриллы между двумя Z линиями называется саркомером.

Схема саркомера мышечного волокна и взаимного расположения толстых миозиновых и тонких актиновых миофиламентов.

Z - линии, разделяющие два соседних саркомера; J- изотропный диск; А - анизотропный диск; Н - участок с уменьшенной анизотропностью

Механизмы сокращения мышечного волокна. В покоящихся мышечных волокнах при отсутствии импульсации мотонейрона поперечные миозиновые мостики не прикреплены к актиновым миофиламентам.