регистрация / вход

Элементы эволюции Вселенной. Космологические модели Вселенной

Теория Большого Взрыва. Понятие реликтового излучения. Инфляционная теория физического вакуума. Основы модели однородной изотропной нестационарной расширяющейся Вселенной. Сущность моделей Леметра, де Ситтера, Милна, Фридмана, Эйнштейна-де Ситтера.

Министерство образования и науки РФ

Федеральное агентство по образованию

НОУ Иркутский Государственный Технический Университет

Реферат

По дисциплине «Концепции современного естествознания»

Тема 69: «Элементы эволюции Вселенной. Космологические модели Вселенной».

Выполнила: Студентка группы: ФКз -09-1

Фомичева Л.Н.

Иркутск 2011г.


Содержание

Введение

Модель Леметра

Модель Большого Взрыва

Реликтовое излучение

Инфляция физического вакуума

Модель расширяющейся вселенной

Модель де Ситтера

Модель Милна

Модель Фридмана

Модель Эйнштейна – де Ситтера

Заключение

Библиографический список


Введение

Вселенную в целом изучает КОСМОЛОГИЯ (т.е. наука о Космосе). Слово это тоже не случайно. Хотя сейчас космосом называют все, находящееся за пределами атмосферы Земли, не так было в Древней Греции. Космос тогда принимался как «порядок», «гармония», В противоположность хаосу - «беспорядку». Таким образом, космология, в основе своей, как и подобает науке, открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого. [2 с. 62]

В историческом аспекте первыми моделями Вселенной были модели Солнечной системы, в центре которой располагалась неподвижная Земля, неподвижная сфера со звездами и подвижные 5 планет, Солнце и Луна. Затем Аристарх Самосский в III в. до э. предложил гелиоцентрическую систему, возрожденную польским священником Н. Коперником в 1514 г. Сюда же можно отнести и античную систему Птолемея, согласно которой за последней сферой располагались ад и рай. Кстати, «модернизацией» этой модели занимались и немецкий астроном И. Кеплер (1571-1630) (эллиптические орбиты вместо круговых) и Г. Галилей. Все это продолжалось до появления законов Ньютона в небесной механике в XVIII в. Уже в это время возникли представления о бесконечной Вселенной. В XIX в. они развились в представления о бесконечной в пространстве, но неизменной во времени Вселенной. Это была стационарная космологическая модель, которая по сути близка статической Вселенной Эйнштейна. [1 с 145]


Модель Леметра

Модель вселенной, которая начинается с Большого взрыва, сменяющегося затем статической фазой и последующим бесконечным расширением. Модель названа по имени Дж. Леметра (1894-1966), который в 1927 г. опубликовал работу по расширению Вселенной. Он первым предложил рассматривать процесс расширения Вселенной от состояния "первичного атома", в то время как Эйнштейн всё ещё был сторонником теории статической Вселенной

Модель Большого Взрыва

Гамов и его аспирант Ральф Алфер построили новую, более реалистичную версию этой модели. Вселенная Леметра родилась из взрыва гипотетического «первичного атома», который явно выходил за рамки представлений физиков о природе микромира. Процентный состав распределения химических элементов во Вселенной на основе леметровской модели (впервые эту работу в 1942 году проделал Чандрасекар) явно противоречил реальности.

В основе этой теории лежит предположение, что физическая Вселенная образовалась в результате гигантского взрыва примерно 15-20 миллиардов лет назад, когда все вещество и энергия современной Вселенной были сконцентрированы в одном сгустке с плотностью свыше 1025 г/смЗ и температурой свыше 1016 К. Модель Большого Взрыва была предложена в 1948г. нашим соотечественником Г.А. Гамовым.

Огромное радиационное давление внутри сгустка привело к необычайно быстрому его расширению – Большому Взрыву. Составные части этого сгустка теперь образуют далекие галактики, очень быстро удаляющиеся от нас. Мы наблюдаем их сейчас такими, какими они были примерно 10-14 млрд. лет назад. Таким образом, расширение Вселенной оказывается естественным следствием теории Большого Взрыва.[1 с. 146-147]

Очень важными в становлении структурной организации Вселенной явились первые три минуты ее существования, когда температура снижалась до 109 К. В этот момент происходил процесс первичного нуклеосинтеза - образование ядер водорода и гелия с небольшой добавкой ядер дейтерия и лития. В результате сформировалась очень плотная плазма, состоявшая из ядер водорода, гелия (с добавкой ядер дейтерия и лития), электронов и фотонов. Положительно заряженные частицы (ядра водорода, гелия и др.) и отрицательно заряженные (электрон) обменивались между собой фотонами, которые в очень плотной плазме не могли пролететь достаточно далеко, не будучи поглощенными или отклоненными заряженными частицами. Пробег фотона от одного акта рассеяния до другого был крайне незначительным; т.е. имело место состояние термодинамического равновесия первичной плазмы и первичного излучения. В этот период Вселенная представляла собой горячий быстро расширяющийся (а значит, постепенно охлаждающийся) непрозрачный «огненный шар».

По мере охлаждения этого огненного шара до температуры около 4000 К (когда возраст Вселенной был около 400 тыс. лет, а размер в 1OOO раз меньше современного) электроны замедлились до скорости, которая позволила ядрам водорода и гелия захватывать их и образовать электрически нейтральные атомы. Этот процесс называется рекомбинацией протонов и нейтронов. Плазма из ионизированной превратилась в смесь нейтральных атомов водорода и гелия. При этом исчезли препятствия для свободного движения фотонов, которые перестали взаимодействовать с веществом и получили возможность свободного передвижения во Вселенной. Когда возраст Вселенной был 1 млн. лет, излучение отделилось от плазмы. Вселенная стала полностью прозрачной для излучения.

Из теории Гамова следовало, что все фотоны, которые освободились после рекомбинации протонов и нейтронов, никуда не исчезли и сохранились до наших дней. Но по мере расширения Вселенной их температура снижалась обратно пропорционально размерам Вселенной. К настоящему времени она должна составлять около 3 К. Эти фотоны должны равномерно заполнять все пространство и создавать особый космический фон электромагнитного излучения. Их число оказывается достаточно высоким: примерно 400-500 фотонов в 1 куб. см. Поскольку это излучение не генерируется космическими телами современной Вселенной, а сохранилось от ранних этапов ее эволюции, оно получило название «реликтового излучения». [3 с. 513 - 514]

Реликтовое излучение

Наиболее важным подтверждением теории Большого Взрыва является обнаружение реликтового излучения, как раз и связанного с существованием первоначального сверхплотного сгустка вещества и излучения. Название «реликтовое излучение» ввел отечественный астрофизик И.С. Шкловский (1916-1983). Первоначально оно обладало огромной энергией, но расширение и охлаждение сгустка привели к тому, что излучение также «остыло» и энергия квантов уменьшилась, т.е. возросла длина их волны. Это фоновое излучение и сейчас существует во Вселенной, но теперь уже в виде радиоволн, микроволнового и инфракрасного излучения. В последние годы экспериментально обнаружена анизотропия (неравномерность) реликтового излучения, которую связывают с неоднородностями распределения материи и наличием слабых возмущений.

Сразу после рождения Вселенная продолжала расти и охлаждаться. Электромагнитное излучение после Большого Взрыва тоже изменяется - увеличивалась средняя длина волны излучения, и температура реликтового излучения уменьшалась. Таким образом, в расширяющемся пространстве температура излучения должна уменьшаться, что и подтверждает крайне низкая температура современного реликтового излучения.

По мере расширения изменяется и состав материи, наполняющей наш мир. Кварки объединяются в протоны и нейтроны, появляются также и античастицы. Однако природа «позаботилась» о том, чтобы частиц было немного больше, чем античастиц. Именно благодаря этой небольшой разнице и существует наш мир. А реликтовое излучение - это как раз последствие аннигиляции частиц и античастиц. В настоящее время считается, что сразу после Большого Взрыва началось сверхбыстрое инфляционное расширение, которое можно определить по флуктуации температуры открытых областей расширения. [1 с. 150 - 151]

Инфляция физического вакуума

Базовым понятием инфляционной космологии является заимствованное в квантовой теории поля понятие физического вакуума. Согласно инфляционной теории, Вселенная возникает из физического вакуума высочайшей плотности за счет фазового перехода первого рода.

Физический вакуум - форма материи, существующая наряду с веществом и полем. Она представляет собой не возбужденное состояние квантовых полей разных типов, которому соответствует минимальная энергия поля. В вакууме существуют реальные частицы, но в силу принципа неопределенности он характеризуется активностью, возникновением и уничтожением виртуальных частиц и способностью находиться в одном из многих состояний с сильно различающимися энергиями и отрицательными давлениями. Возбужденное состояние физического вакуума называют «ложным вакуумом», который способен создать гигантскую силу космического отталкивания.

Эта сила и вызвала безудержное и стремительное раздува «пузырей пространства» (зародышей одной или нескольких вселенных), в которых потенциально сконцентрированы колоссальные запасы энергии. Подобное раздувание Вселенной осуществлялось по экспоненте. За первые 10-34 С. диаметр Вселенной увеличился по меньшей мере в 10100 раз. Скорость раздувания значительно превосходила световую, но это не противоречит закону теории относительности, так как раздувание не связано с установлением причинно-следственных связей в веществе. Данный тип раздувания был назван инфляцией. За этот мельчайший отрезок времени размер Вселенной увеличился больше, чем за все последующие 13,7 млрд. лет. В период квантовой космологии, т. е. с 10-43 с. по 10-34 С. произошло, по-видимому, и формирование пространственно-временных характеристик нашей Вселенной.

Модели струнной космологии, дополняя инфляционную космологию, показывают, что до начала расширения все пространственные измерения были совершенно равноправны, симметричны и плотно свернуты в многомерный (9 или более измерений) узел планковских размеров (l0-33 см). Но затем симметрия нарушается, три пространственных измерения отделяются от остальных и начинают расширяться по сценарию инфляционной космологии. Остальные же измерения остаются свернутыми.

Почему именно три измерения начали расширяться? Теория объясняет это закономерностями струн, их способностью наматываться или не наматываться вокруг циклического, свернутого измерения, а также наличием струн и антиструн. Намотанные в измерение струны сдерживают его расширение. Если встречаются струна и антиструна, то они аннигилируют и образуют не намотанную струну, которая перестает сдерживать измерение, и оно как пружина, может расширяться. При этом вероятность столкновения струн и антиструн в одномерном, двумерном и трехмерном пространствах достаточно велика, но она становится крайне незначительной при четырех и более измерениях. Анализ показывает, что сначала столкновения струн и антиструн происходили вокруг всех свернутых измерений, но когда аннигиляция ослабила сдерживающую силу сначала одного, затем второго и третьего измерения и они начали все больше расширяться, вероятность раскрытия других измерений резко уменьшилась. Струны пытались обмотать расширяющиеся измерения, но по мере расширения для этого требовалось все больше и больше энергии. Чем больше расширение, тем меньше препятствий для дальнейшего расширения. Так, расширение трех пространственных измерений, подстегивая само себя, приобретало инфляционный характер.

Но фаза инфляции не может быть длительной. Отрицательный (ложный) вакуум неустойчив и стремится к распаду. Когда распад завершается, отталкивание исчезает, следовательно, исчезает и инфляция. Вселенная переходит во власть обычного гравитационного притяжения. «Часы» Вселенной в этот момент показывали всего 10-34 с. Но благодаря полученному первоначальному импульсу, приобретенному в процессе инфляции, расширение Вселенной продолжается.

В фазе инфляции Вселенная была пустой и холодной. Но по окончании фазы огромные запасы энергии, сосредоточенные в холодном физическом вакууме, высвободились в виде излучения, которое мгновенно нагрело Вселенную до температуры примерно 1029 К . [3 с. 517 - 519]

Модель расширяющейся Вселенной

Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 г. В основе этой модели лежат два предположения: свойства Вселенной одинаковы во всех ее точках (однородность) и направлениях (изотропность); наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии).

Важным пунктом данной модели является ее нестационарность. Это определяется двумя постулатами теории относительности: принцип относительности, гласящий, что во всех инерционных системах все законы сохраняются вне зависимости от того, с какими скоростями равномерно и прямолинейно движутся эти системы друг относительно друга; экспериментально подтвержденное постоянство скорости света.

Из теории относительности следовало, что искривленное пространство не может быть стационарным: оно должно или расширяться или сжиматься. Первым это заметил в 1922 г. петербургский физик и математик Александр Александрович Фридман. На этот вывод не обращали внимания вплоть до открытия американским астрономом Эдвином Хабблом в 1929 г. так называемого красного смещения.

Красное смещение - это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Согласно обнаруженному ранее эффекту Доплера при удалении от нас какого-либо источника колебаний; воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», т.е. линии спектра сдвигаются в сторону более длинных красных волн.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, т.е. о расширении Метагалактики - видимой части Вселенной.

Красное смещение надежно подтверждает теоретический вывод о нестационарности области нашей Вселенной с линейными размерами порядка нескольких миллиардов парсек на протяжении, по меньшей мере, нескольких миллиардов лет. В то же время кривизна пространства не может быть измерена, оставаясь теоретической гипотезой. [2 с. 63-64]


Модель де Ситтера

Модель расширяющейся Вселенной, предложенная в 1917 г., в которой не существует вещества или излучения. Эта нереалистичная гипотеза имела, тем не менее, исторически важное значение, поскольку в ней впервые выдвигалась идея о расширяющейся, а не статичной Вселенной. [6]

Отсутствие вещества было, конечно, слабым местом модели де Ситтера. Но было у нее и одно существенное достоинство. Согласно теории де Ситтера, чем дальше взгляд земного наблюдателя проникал в пространство, тем медленнее должны были ему казаться происходящие там процессы. Стоило же предпринять путешествие «в эти отдаленные области лени и неторопливости» на космическом корабле, как по мере нашего приближения мы увидели бы постепенное оживление хода времени. И к моменту нашего прибытия жизнь кипела бы там в обычном темпе. Это явление можно было истолковать, как предсказание будущего красного смещения. К сожалению, в те годы на это никто не обратил внимания. [5]

Модель Милна

Модель расширяющейся Вселенной без использования общей теории относительности, предложенная в 1948 г. Эдвардом Милном. Это расширяющаяся, изотропная и однородная Вселенная, не содержащая вещества. Она имеет отрицательную кривизну и незамкнута.

Модель Фридмана

Модель Вселенной, которая может коллапсировать внутрь себя. В 1922 г. советский математик А.А. Фридман, анализируя уравнения общей теории относительности Эйнштейна, пришёл к выводу, что Вселенная не может находиться в стационарном состоянии — она должна либо расширяться, либо пульсировать. Сначала эта работа (1922 и 1924 гг.) была полностью проигнорирована, но позже на неё обратили внимание в связи с моделью Вселенной Леметра. Вселенная Фридмана может быть замкнутой, если плотность вещества в ней достаточно велика, чтобы остановить расширение. Этот факт привёл к поиску так называемой недостающей массы. В дальнейшем выводы Фридмана получили подтверждение в астрономических наблюдениях, обнаруживших в спектрах галактик так называемое красное смещение спектральных линий, что соответствует взаимному удалению этих звездных систем.

Модель Эйнштейна-де Ситтера

Самая простая из современных космологических моделей, в которой Вселенная имеет нулевое давление, нулевую кривизну (т.е. плоскую геометрию) и бесконечную протяженность, а ее расширение не ограничено в пространстве и во времени. Предложенная в 1932 г., эта модель является частным случаем (при нулевой кривизне) более общей вселенной Фридмана. [6]


Заключение

Мы знаем, что наше Солнце дает необходимую для нашего существования энергию. А зачем нужны галактики? Оказывается и галактики, и Солнце не только обеспечивает нас энергией. Астрономические наблюдения показывают, что из ядер галактик происходит непрерывное истечение водорода. Таким образом, ядра галактик являются фабриками по производству основного строительного материала Вселенной - ВОДОРОДА.

Водород, атом которого состоит из одного протона в ядре и одного электрона на его орбите, является самым простым «кирпичиком», из которого в недрах звезд образуются в процессе атомных реакций более сложные атомы. Причем оказывается, что звезды совершенно не случайно имеют различную величину. Чем больше масса звезды, тем более сложные атомы синтезируются в ее недрах.

Наше Солнце как обычная звезда «производит» только гелий из водорода (который дают ядра галактик), очень массивные звезды «производят» углерод - главный «кирпичик» живого вещества. Вот для чего нужны галактики и звезды. А для чета нужна Земля? Она производит все необходимые вещества для поддержания жизни человека. А для чего существует человек? На этот вопрос не может ответить наука, но она может заставить нас еще раз задуматься над ним. [2 с. 66-67]


Библиографический список

1. Горбачев В.В Концепции современного естествознания: Учеб. пособие для студентов вузов/В.В Горбачев. – 3-е изд., перераб. – М.: ООО «Издательство оникс»: ООО «Издательство «Мир и образование», 2008 – 704 с.: ил.

2. Горелов А.А Концепции современного естествознания: Учеб. пособие для студ. высш. учеб. заведений. – М.: Гуманит. изд. центр ВЛАДОС, 2003. – 512 с.: ил.

3. Найдыш В.М. Концепции современного естествознания: Учебник. – Изд. 3-е, перераб. и доп. – М.: Альфа-М; ИНФРА-М, 2008. – 704 с.: ил.

4. http://ru.wikipedia.org/wiki

5. http://ru.vlab.wikia.com

6. znaniya-sila.narod.ru

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий