Смекни!
smekni.com

Основы естествознания (стр. 4 из 4)

Концепция пространства-времени сыграла исторически ключевую роль в создании геометрической теории гравитации. В рамках общей теории относительности гравитационное поле сводится к проявлениям геометрии четырехмерного пространства-времени, которое в этой теории не является плоским (гравитационный потенциал в ней отождествлен с метрикой пространства-времени).

Первый развёрнутый вариант модели естественного объединения пространства и времени, пространство Минковского, был создан Германом Минковскимв 1908 году на основе специальной теории относительности Эйнштейна, а несколько ранее (в 1905 году), существенное продвижение на этом пути сделал Анри Пуанкаре, заложивший основы четырехмерного пространственно-временного формализма.


26. Особенности биологического уровня организации материи

1 постулат: "Все живые организмы должны быть единством фенотипа и программы для его построения (генотипа), передающегося по наследству из поколения в поколение".

2 постулат: "Наследственные молекулы синтезируются матричным путем. В качестве матрицы, на которой строится ген будущего поколения, используется ген предыдущего поколения".

3 постулат: "В процессе передачи из поколения в поколение генетические программы в результате многих причин изменяются случайно и не направленно, и лишь случайно эти изменения оказываются приспособительными".

4 постулат: "Случайные изменения генетических программ при становлении фенотипов многократно усиливаются и подвергаются отбору условиями внешней среды".

27. Сущность живого, его основные признаки

Жизнь — форма существования материи, в некотором смысле высшая по сравнению с её физической и химической формами существования. Нет единого мнения о том, какие именно отличия являются необходимыми и достаточными для отнесения объекта к живому или неживому. Например, неясно, можно ли считать живыми организмами вирусы.[1]. Основной атрибут живой материи — генетическая информация, используемая для репликации. Развитие живой природы привело к появлению человечества.

Современная биология при описании живого идет по пути перечисления основных свойств живых организмов. При этом подчеркивается, что только совокупность данных свойств может дать представление о специфике жизни. Первое. Живые организмы характеризуются сложной, упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах. Второе. Живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию. Третье. Живые организмы активно реагируют на окружающую среду. Способность реагировать на внешние раздражители – универсальное свойство всех живых существ, как растений, так и животных. Четвертое. Живые организмы способны не только изменяться, но и усложняться. Они могут создавать новые органы, отличающиеся от породивших их структур. Пятое. Живое способно к самовоспроизведению. Шестое. Живые организмы способны передавать потомкам заложенную в них информацию, содержащуюся в генах – единицах наследственности. Эта информация в процессе передачи может видоизменяться и искажаться. Это предопределяет изменчивость живого. Седьмое. Живые организмы способны приспосабливаться к среде обитания и своему образу жизни.

28. Принципы биологической эволюции. Принципы воспроизводства и развития живых систем. Наследственность,изменчивость, естественный отбор

Биологическая эволюция — необратимое и направленное историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптаций, видообразованием и вымиранием видов, преобразованием экосистем и биосферы в целом. Биологическую эволюцию изучает эволюционная биология.

Наследственность — это свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом.

Изменчивость складывается из мутаций, потока генов и рекомбинации генетического материала. Изменчивость также увеличивается за счет обменов генами между разными видами, таких как горизонтальный перенос генов у бактерий, гибридизация у растений. Несмотря на постоянные увеличение изменчивости за счет этих процессов, большая часть генома идентична у всех представителей данного вида.

29. Современные проблемы генетики

Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930–1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию "химер" – трансгенных растений и животных, "копированию" животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической "паспортизации" людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ.

30. Молекулярные основы генетики. Роль ДНК в передаче наследственной информации. Открытие Д. Уотсона и Ф. Крика

Молекуля́рнаягене́тика — область биологии на стыке молекулярной биологии и генетики. По сути является одним из разделов молекулярной биологии. В области генетики молекулярная биология вскрыла химическую природу вещества наследственности, показала физико-химические предпосылки хранения в клетке информации и точного копирования её для передачи в ряде поколений.

М. г. выделилась в самостоятельное направление в 40-х гг. 20 в. в связи с внедрением в биологию новых физических и химических методов (рентгеноструктурный анализ, хроматография, электрофорез, высокоскоростное центрифугирование, электронная микроскопия, использование радиоактивных изотопов и т. д.), что позволило гораздо глубже и точнее, чем раньше, изучать строение и функции отдельных компонентов клетки и всю клетку как единую систему. С новыми методами в биологию пришли новые идеи физики и химии, математики и кибернетики.

В 1952 году Уотсон и Крик стали работать над моделированием структуры ДНК.

31. Синергетика – теория самоорганизации

Синерге́тика — междисциплинарное направление научных исследований, задачей которого является изучение природных явлений и процессов на основе принципов самоорганизации систем (состоящих из подсистем). "…Наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы…".

С мировоззренческой точки зрения синергетику иногда позиционируют как "глобальный эволюционизм" или "универсальную теорию эволюции", дающую единую основу для описания механизмов возникновения любых новаций подобно тому, как некогда кибернетика определялась, как "универсальная теория управления", одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и т. п. и т. д.

Основное понятие синергетики — определение структуры как состояния, возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особых режимов с обострением и наличия более одного устойчивого состояния. В обозначенных системах неприменимы ни второе начало термодинамики, ни теорема Пригожина о минимуме скорости производства энтропии, что может привести к образованию новых структур и систем, в том числе и более сложных, чем исходные.

32. Человек и биосфера

"ЧЕЛОВЕК И БИОСФЕРА" (англ. ManandBiosphere, MAB) — долгосрочная межправительственная междисциплинарная программа научных исследований проблем управления естественными ресурсами. Принята в 1970 г. на 16-й сессии Генеральной конференции ЮНЕСКО. В программе участвует свыше 100 государств, в т. ч. РФ. Программа "Ч. и б." включает 14 проектов, в рамках которых изучают влияние многообразной деятельности человека на основные типы природных сообществ и на окружающую среду в целом.

33. Взаимовлияние человека и природы. Экологические проблемы и их решение

Экологические проблемы, связанные с нарушением отдельных компонентов ландшафта или их комплекса можно условно объединить в шесть групп:

* атмосферное (загрязнение атмосферы: радиологическое, химическое, механическое, тепловое);

* водные (истощение и загрязнение поверхностных и подземных вод, загрязнение морей и океанов);

* геолого-геоморфологическое (интенсификация неблагоприятных геолого-геоморфологических процессов, нарушение рельефа и геологического строения);

* почвенные (загрязнение почв, эрозия, дефляция, вторичное засоление, заболачивание и др.);

* биотические (сведение растительности, деградация лесов, пастбищная дигрессия, сокращение видового разнообразия и др.);

* комплексные (ландшафтные) — опустынивание, снижение биоразнообразия, нарушение режима природоохранных территорий и т. д.

По основным экологическим последствиям изменения природы выделяют следующие экологические проблемы и ситуации:

* антропоэкологические, по изменению условий жизни и здоровья населения;

* природно-ресурсные, связанные с истощением и утратой природных ресурсов, ухудшающие хозяйственную деятельность на территории;

* ландшафтно-генетические, обусловленные нарушением целостности ландшафтов, утратой генофонда, потерей уникальных природных объектов.