Смекни!
smekni.com

Концепции современного естествознания Гусейханов Раджабов (стр. 37 из 104)

Основополагающим является также закон сохранения момента импульса системы (тела). В классической механике моментом импульса частицы (моментом количества движения) называют векторное произведение:

где r, Р — радиус-вектор и вектор импульса частицы.

Этот закон утверждает, что момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени. Если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения.

Данный закон может быть обобщен на любую незамкнутую систему тел: если результирующий момент всех внешних сил, приложенных к системе, относительно какой-либо неподвижной оси равен нулю, то момент импульса системы относительно той же оси не изменяется с течением времени. В частности, этот закон справедлив для замкнутой системы тел.

188


В электрических явлениях фундаментальным является закон сохранения электрического заряда. Для замкнутой системы частиц суммарный электрический заряд системы со временем не изменяется, т. е. остается постоянным.

Наиболее ярко проявление законов сохранения мы наблюдаем в мире элементарных частиц. Здесь действует правило: разрешено все, что не запрещают законы сохранения. Последние играют роль правил запрета, регулирующих взаимопревращение частиц. Прежде всего отметим законы сохранения энергии, импульса и электрического заряда. Эти три закона, например, объясняют стабильность электрона. Из сохранения энергии и импульса следует, что суммарная масса покоя продуктов распада должна быть меньше массы покоя распадающейся частицы. Значит, электрон мог бы распадаться только на нейтрино и фотоны. Но эти частицы электрически нейтральны. Вот и получается, что электрону просто некому передать свой электрический заряд; поэтому он стабилен. Существует много специфических параметров, сохранения которых регулирует взаимопревращение частиц, — барионный заряд, лептонный заряд, четность (пространственная, временная, зарядовая), странность, очарование и др. Некоторые из них не сохраняются в процессах, обусловленных слабым взаимодействием (четность, странность, "очарование").

Согласно, например, закону сохранения барионного заряда, в любом процессе должна оставаться неизменной разность между числом барионов и антибарионов. Протон—барион с наименьшей массой; следовательно, среди продуктов его распада барионов быть не может. Этим объясняется стабильность протона — его распад приводил бы к некомпенсированному уничтожению бариона.

8.5. Законы сохранения и принципы симметрии

Мы рады той таинственности, которая находится за пределами нашей досягаемости.

Харлоу Шепли

Среди всех физических законов своей всеобщностью, высшей степени фундаментальностью выделяются законы со-

189


хранения энергии импульса, момента импульса и ряда других величин. Своим происхождением эти законы сохранения обязаны свойствам симметрии природы. Немецкий математик Эмми Нетер доказала в 1918 г. теорему, сущность которой заключается в утверждении, что различным симметриям физических законов соответствуют определенные законы сохранения. Свойства симметрии природы выражаются в неизменности вида физических законов, т. е. в их инвариантности, при некоторых преобразованиях. Тем самым была математически доказана связь между законами сохранения и симметрией законов природы. По выражению Р. Фейнмана, "среди наиболее мудрейших и удивительных вещей в физике эта связь — одна из самых интересных и красивых".

Симметрия предполагает неизменность объекта или свойств объекта по отношению к каким-нибудь преобразованиям, операциям, выполняемым над объектом. Слово это греческое и переводится как "соразмерность, пропорциональность, одинаковость в расположении частей". Симметрию можно понимать в геометрическом смысле — как симметрию положений. Например, рассмотрение объектов по отношению к отражениям, поворотам, переносам. Симметрия имеет определенную структуру, состоящую из трех факторов: 1) объект или явление, симметрия которого рассматривается; 2) изменение или преобразование, по отношению к которому рассматривается симметрия; 3) инвариантность или неизменность, сохранение каких-либо свойств объекта, выражающих рассматриваемую симметрию.

Важное значение имеет симметрия физических законов, которые в основном связаны со свойствами пространства и времени. Остановимся более подробно на физическом содержании свойств законов по отношению к преобразованиям фундаментальной симметрии.

1. Симметрия по отношению к сдвигу начала отсчета времени, или свойство однородности времени, проявляется в физическом эквиваленте разных его моментов. Разные моменты времени эквивалентны в том смысле, что любой физический

190


г


процесс протекает одинаковым образом независимо от того, когда он начался. При этом условия, существенные для процесса, в будущем должны быть такие же, как и в прошлом. Свойство однородности времени позволяет сравнить результаты опытов, проделанных в разное время. Однородность времени нужно понимать как физическую неразличимость всех моментов времени свободных объектов. Другими словами, если объекты не взаимодействуют с окружением, то для них любой момент времени может быть принят за начальный. Мы считаем, что изученные закономерности в поведении атомов были теми же самыми и многие миллионы лет тому назад. Отсутствие однородности времени вело бы к тому, что люди не могли бы прогрессировать в познании.

Однородность времени, т. е. симметрия по отношению к преобразованию t = t0 + t', приводит к закону сохранения энергии. Этот закон выполняется для систем, находящихся в неизменных во времени внешних условиях. Такие условия создаются только потенциальными внешними полями и называются стационарными. Действительно, выбор начала отсчета времени несущественен, если только неизменны во времени внешние условия, в которых находится система. Энергия, таким образом, может быть определена как физическая величина, сохранение которой обусловлено указанной симметрией.

2. Симметрия по отношению к сдвигу начала координат, или свойство однородности пространства, означает, что все точки физического пространства эквиваленты. Эта эквивалентность выражается в том, что явление, произошедшее в одной области пространства, повторится без изменений, если будет вызвано в другом месте. При этом необходимо перенести в новое место всю совокупность факторов существенно обусловливающих явление. Отметим, что надо сравнивать результаты одинаковых экспериментов, поставленных в разных лабораториях.

Однородность пространства означает, что любая его точка физически равноценна, т. е. перенос любого объекта в пространстве никак не влияет на процессы, происходящие с этим объектом.

191


Так, мы совершенно уверены, что свойства атомов у нас на Земле, в условиях Луны, других планет и на Солнце одни и те же. Если бы эти кажущиеся столь очевидными свойства однородности пространства и времени отсутствовали, то было бы почти бессмысленно заниматься наукой. В самом деле, представьте себе, к чему бы вело отсутствие однородности пространства — законы физики в Москве были бы одни, в Махачкале — другие.

Однородность пространства, т. е. симметрия по отношению к преобразованию сдвига

, приводит к закону сохра-

нения импульса.

Закон сохранения импульса соблюдается для изолированных систем. Импульс, или количество движения, таким образом, является физической величиной, сохранение которой связано с однородностью пространства.

3. Симметрия по отношению к повороту координатных осей,
или свойство изотропности пространства, есть физическая эк
вивалентность направлений в пространстве. Она выражается
в том, что в повернутой установке, аппаратуре, лаборатории и
т. д. все процессы протекают точно так же, как и до поворота.
При этом повороту должно быть подвергнуто все, определяющее
течение процесса.

Изотропность пространства, т. е. симметрия по отношению к поворотам, приводит к закону сохранения момента импульса. Этот закон также соблюдается для изолированных систем. Момент импульса частицы или системы сохраняется также центрально-симметричным силовым внешним полем. Момент импульса является величиной, сохранение которой связано с изотропностью пространства.

4. Симметрия по отношению к переходу от покоя к состоя
нию равномерного и прямолинейного движения, или свойство
галилеевской (нерелятивистской) инвариантности, заключается
в физической эквивалентности покоя и равномерного прямоли
нейного движения. В любой системе все процессы происходят
независимо от того, покоится система или движется равномерно
и прямолинейно, если только переход от одного состояния к дру
гому осуществляется со всем существенным окружением.

192


Вследствие однородности пространства и времени движение свободного тела (тело, настолько удаленное от всех окружающих тел, что можно пренебречь его взаимодействием с ними) будет равномерным, т. е. за равные промежутки времени тело должно проходить равные расстояния; оно будет к тому же и прямолинейным, ибо пространство "плоское" — Евклидово. Такое движение свободных тел называют движением по инерции. Движение тел по инерции есть проявление своеобразной симметрии пространства и времени, их однородности.